論文リスト
(学会発表論文および一部の学術雑誌論文のPDFファイルがDLできます)
著書(分担執筆) 解説記事 学術雑誌論文 国
際学会発表 国内学会発表 翻訳 博士論文
著書(分担執筆)
[1] Shigeru Obayashi and Akira Oyama, “Adaptive
Range Genetic Algorithms,” Chapter 5 of “Genetic Algorithms in
Aeronautics and Turbomachinery,” editors: Jacques Periaux, Gerard
Degrez and Mourad Sefrioui, John Wiley & Sons Limited, Chichester,
U.K., 2003.
[2] Akira Oyama, "Constraint Handling in Evolutionary Aerodynamic
Design," in "Constraint-Handling in Evolutionary Optimization," editor:
Efren Mezura-Montes, Springer-Verlag GmbH, Heidelberg, Germany, ISBN
36420061832009, 2009.
[3] Akira Oyama and Kozo Fujii, "Multiobjective
Design Exploration in Space Engineering," in
"New Fundamental Technologies in DATA MINING," editor: Kimito Funatsu
and Kiyoshi Hasegawa,
IN-TECH, Vienna, Austria, 2011.
解説記事
[ 1] 大山聖,藤井孝藏,JAXA/ISASにおけるロケット・宇宙機研究開発へのCFDの活用,ながれ 24巻,第3号 pp.289-296,2005.
[ 2] 大山聖,藤本圭一郎,飯塚宣行,角有司,川添通宏,高木亮治,藤井孝藏,沖田耕一,JAXA基幹ロケットの信頼性向上へ向けたバルブ開発プロセス革新への
取り組み,設計工学(日本設計工学会学会誌),第43巻,第4号,pp.203-210, 2008年4月.
[ 3] 谷直樹,吉田義樹,大山聖,山西伸宏,低比速度インペラにおけるオープン型とクローズド型の最適形状の比較,ターボ機械 2010年04月号,日本工業出版,2010年4月.
[ 4] 大山聖,多目的設計探査と宇宙工学への利用,システム/制御/情報,Vol. 55, No. 9, pp. 374-381, 2011.
[ 5] 大山聖,宇宙工学分野での進化型計算の利用,電気学会誌,Vol. 132 (4), pp. 208-211, 2012.
[ 6] 大山聖,岡田浩一,浅田健吾,野々村拓,宮路幸二,藤井孝藏,シンセティックジェットによる流れの能動制御,日本航空宇宙学会誌,Vol.61(2), pp. 57-63, 2013.
[ 7] 大山聖,ロケット射点形状の空力音響多目的設計探査,CMDニュースレター,第51号,2013.
[ 8] 大山聖,立川智章,野々村拓,藤井孝藏,空力音響多目的設計探査 - ロケット射点形状設計への適用-,ターボ機械,2014年5月号,ターボ機械協会,2014.
[ 9] 大山聖,第45期年会講演会開催報告,日本航空宇宙学会誌,第62巻,第7号,pp.248-249, 2014.
学術雑誌論文
[1] 大山聖, 大林茂, 中橋和博, 中村孝, 遺伝的アルゴリズムを用いた三次元翼の空力最適化,日
本航空宇宙学会誌, 第46巻, 第539号, pp.682-686, 1998年.
[2] Oyama, A., Obayashi, S., Nakahashi, K., and Nakamura,
“Euler/Navier-Stokes Optimization of Supersonic Wing Design Based on
Evolutionary Algorithm,” AIAA Journal, Vol.37, No.10,
pp.1327-1329, October 1999. (10)
An evolutionary algorithm (EA) coupled with a Euler/Navier-Stokes
code has been applied to supersonic wing shape design. Aerodynamic
evaluations are distributed to the processing elements (PE) of the
numerical wind tunnel (NWT) to overcome the enormous computational time
necessary for the optimization. The design yields both the minimum drag
and the minimum volume wave drag in the given design space. The
important features of supersonic wing design as compared with
conventional transonic wing design are presented.
[3] Akira Oyama, Shigeru
Obayashi, Kazuhiro Nakahashi, and Naoki Hirose, “Aerodynamic Wing
Optimization via Evolutionary Algorithms based on structured coding,” CFD
Journal, Vol.8, No.4, pp. 570-577, January 2000.
Evolutionary Algorithms (EAs) based on structured coding have been
proposed for aerodynamic optimization of wing design. Fractional
factorial design is used to investigate interactions of the design
variables to determine the appropriate coding structure for EAs in
advance. The present EAs is applied to wing design problems where the
wing shape is modeled using the parameter set for the extended
Joukowski airfoils and the PARSEC airfoils. Aerodynamic optimizations
of a transonic wing demonstrated that the structured coding for EAs is
a promising approach to find a global optimum in real-world
applications. The design results also confirm that the PARSEC is an
efficient approach for transonic wing shape parameterization.
[4] Akira Oyama, Shigeru Obayashi,
and Kazuhiro Nakahashi, “Real-Coded Adaptive Range Genetic Algorithm
and Its Application to Aerodynamic Design,” JSME International
Journal, Series A, Vol. 43, No. 2, pp. 124-129, February 2000. (13)
Real-coded Adaptive Range Genetic Algorithms (ARGAs) have been
developed. The real-coded ARGAs possess both advantages of the
binary-coded ARGAs and the use of the floating point representation to
overcome the problems of having a large search space that requires
continuous sampling. First, the efficiency and the robustness of the
proposed approach are demonstrated by test functions. Then the proposed
approach is applied to an aerodynamic airfoil shape optimization
problem. The results confirm that the real-coded ARGAs consistently
find better solutions than the conventional real-coded Genetic
Algorithms do. The designed airfoil shape is considered to be the
global optimal and thus ensures the feasibility of the real-coded ARGAs
in aerodynamic designs.
[5] Akira Oyama, Shigeru Obayashi,
and Takashi Nakamura, “Real-Coded Adaptive Range Genetic Algorithm
Applied to Transonic Wing Optimization,” Applied Soft Computing,
Vol. 1, No. 3, pp. 179-187, 2001. (16)
Real-coded Adaptive Range Genetic Algorithm (ARGA) has been applied
to a practical three-dimensional shape optimization for aerodynamic
design of an aircraft wing. The real-coded ARGA possesses both
advantages of the binary-coded ARGA and the floating-point
representation to overcome the problems of having a large search space
that requires continuous sampling. The results confirm that the
real-coded ARGA consistently finds better solutions than the
conventional real-coded Genetic Algorithms do.
[6] 蓮池尚彦, 大山聖, 中橋和博, 大林茂, 2次元翼型失速限界のCFD予測,日本航空宇宙学会論文集, 第50巻,
577号, pp.56-63, 2002年2月.
[7] Akira Oyama, and Meng-Sing Liou, “Multiobjective Optimization of
Rocket Engine Pumps Using Evolutionary Algorithm,” AIAA Journal of
Propulsion and Power, Vol. 18, No. 3, pp. 528-535, 2002. (6)
A design optimization method for turbopumps of cryogenic rocket engines
has been developed. Multiobjective Evolutionary Algorithm is used for
multiobjective pump design optimizations. Performances of design
candidates are evaluated by using the meanline pump flow-modeling
method based on the Euler turbine equation coupled with empirical
correlations for rotor efficiency. To demonstrate feasibility of the
present approach, single stage centrifugal pump and multistage pump
design optimizations are performed. Number of pump performance
evaluations necessary to obtain a reasonable Pareto-optimal set for the
conceptual rocket engine pump design will be investigated using the
single stage centrifugal pump design optimization. In both design
optimizations, the present method obtains hundreds of reasonable and
uniformly distributed Pareto-optimal solutions that include some
designs outperforming the original design in total head while reducing
input power by 1%. Detailed observation of the design results also
reveals some important design criteria for turbopumps in cryogenic
rocket engines. These results demonstrate the feasibility of the
evolutionary algorithm-based multiobjective design optimization method
in this field.
[8] Akira Oyama, and Meng-Sing Liou, "Design Optimizations of
Turbomachines Using Evolutionary Algorithm",” Transactions of the
Aeronautical and Astronautical Society of the Republic of China,
Vol. 34, No. 2, pp. 528-535, June 87-102, 2002. (1)
Numerical optimization tools based on Evolutionary Algorithm (EA) have
been developed for single-objective and multiobjective aerodynamic
turbomachinery design optimizations. The present method uses real-coded
adaptive range genetic algorithm for single-objective optimization. A
standard multiobjective evolutionary algorithm is used for
multiobjective optimizations. First, single-objective aerodynamic
design optimization of a compressor rotor using a three-dimensional
Navier-Stokes code is demonstrated. The optimized design successfully
reduced entropy production by more than 19% while satisfying
constraints on the mass flow rate and the pressure ratio. This study
also showed that parallelization efficiency of EA is almost 100% for
three-dimensional Navier-Stokes optimizations. Next, multiobjective
preliminary design optimization of a cryogenic rocket engine turbopump
is presented. The present method successfully captured reasonable
Pareto-optimal solutions that include designs outperforming the
baseline design in all objectives. Finally, multiobjective aerodynamic
design optimization of a multi-stage compressor using a through-flow
code is demonstrated. The present method successfully found numerous
designs better than the baseline design in all objectives. These result
shows that the present method offers a promising approach to
turbomachinery and propulsion system designer to design a better
machine, while shortening design cycle and reducing design costs.
[9] Shigeru Obayashi, Daisuke Sasaki, and Akira Oyama, "Finding
Tradeoffs by Using Multiobjective Optimization Algorithms," Transactions
of the Japan Society for Aeronautical and Space Sciences, Vol. 47,
No. 155, pp. 51-58, May 2004. (8)
The objective of the present study is to demonstrate performances of
Evolutionary Algorithms (EAs) and conventional gradient-based methods
for finding Pareto fronts. The multiobjective optimization algorithms
are applied to analytical test problems as well as to the real-world
problems of a compressor design. The comparison results clearly
indicate the superiority of EAs in finding tradeoffs.
[10] Akira Oyama, Meng-Sing Liou, and Shigeru Obayashi, "Transonic
Axial-Flow Blade Optimization Using Evolutionary Algorithms and a
Three-Dimensional Navier-Stokes Solver," AIAA Journal of Propulsion
and Power, Vol. 20, No. 4, pp. 612-619, July-August, 2004. (10)
The objective of this study was to develop a high-fidelity
aerodynamic design optimization tool based on evolutionary algorithms
for turbomachinery. A three-dimensional Navier-Stokes solver was used
for aerodynamic analysis so that flow fields would be represented
accurately and that realistic and reliable designs would be produced.
For efficient and robust design optimization, the real-coded adaptive
range genetic algorithm was adopted, and the computation was
parallelized and performed on an SGI Origin 2000 cluster to reduce
turnaround time. The aerodynamic redesign of the NASA rotor 67 blade
demonstrated the superiority of the present method over the
conventional design approach, increasing adiabatic efficiency by 2
percent over the original design, not only at the design condition but
over the entire operating range. This design optimization method has
proven to be suitable for parallel computing. This study shows that
this promising tool can help turbomachinery designers to design higher
performance machines, while shortening the design cycle and reducing
design costs.
[11] Akira Oyama, Koji Shimoyama, and Kozo Fujii, “New
Constraint-Handling Method for Multi-Objective and Multi-Constraint
Evolutionary Optimization,” Transactions of the Japan Society for
Aeronautical and Space Sciences, Vol. 50, No. 167, pp. 56-62, May
2007.
A new constraint-handling method based on Pareto-optimality and
niching concepts for multi-objective multi-constraint evolutionary
optimization is proposed. The proposed method does not require any
constants to be tuned for constraint-handling. In addition, the present
method does not use the weighted-sum of constraints and thus does not
require tuning of weight coefficients and is efficient even when all
individuals in the initial population are infeasible or the amount of
violation of each constraint is significantly different. The proposed
approach is demonstrated to be remarkably more robust than the dynamic
penalty approach and other dominance-based approaches through the
optimal design of a welded beam and conceptual design optimization of a
two-stage-to-orbit spaceplane.
[12] Kazuhisa Chiba, Akira Oyama, Shigeru Obayashi, Kazuhiro
Nakahashi, and Hiroyuki Morino, “Multidisciplinary Design Optimization
and Data Mining for Transonic Regional-Jet Wing,” Journal of
Aircraft, Vol. 44, No. 4, pp. 1100-1112, 2007. (3)
A large-scale, real-world application of Evolutionary Multi-Objective
Optimization is reported. The Multidisciplinary Design Optimization
among aerodynamics, structures, and aeroelasticity of the wing of a
transonic regional jet aircraft was performed using high-fidelity
evaluation models. Euler and Navier-Stokes solvers were employed for
aerodynamic evaluation. The commercial software NASTRAN was coupled
with a Computational Fluid Dynamics solver for the structural and
aeroelastic evaluations. Adaptive Range Multi-Objective Genetic
Algorithm was employed as an optimizer. The objective functions were
minimizations of block fuel and maximum take off weight in addition to
drag divergence between transonic and subsonic fight conditions. As a
result, nine non-dominated solutions were generated and used for
tradeoff analysis among three objectives. Moreover, all solutions
evaluated during the evolution were analyzed using a Self-Organizing
Map as a Data Mining technique to extract key features of the design
space. One of the key features found by Data Mining was the non-gull
wing geometry, although the present MDO results showed the inverted
gull-wings as non-dominated solutions. When this knowledge was applied
to one optimum solution, the resulting design was found to have better
performance and to achieve 3.6 percent improvement in the block fuel
compared to the original geometry designed in the conventional manner.
[13] Koji Shimoyama, Akira Oyama, and Kozo Fujii, “Development
of Multi-Objective Six-Sigma Approach for Robust Design Optimization,” Journal
of Aerospace Computing, Information, and Communication, Vol. 5,
August 2008.
In this study, a new optimization approach for robust design,
design for multi-objective six sigma, has been developed and applied to
three robust optimization problems. The design for multiobjective six
sigma build s on the ideas of design for six sigma, coupled with
multi-objective evolutionary algorithm, for an enhanced capability to
reveal trade off information considering both optimality and robustness
of design. While design for six sigma require careful input parameter
setting, design for multi-objective six sigma needs no such prior
tuning, plus it can reveal the tradeoff information in a single
optimization run. Three robust optimization problems were taken as to
demonstrate the capabilities of design for multi-objective six sigma.
Results indicate that design for multi-objective six sigma has a more
practical and more efficient capability than the design for six sigma
to reveal tradeoff design information considering both optimality and
robustness of design.
[14] Akira Oyama, Yoshiyuki Okabe, Koji Shimoyama, and Kozo
Fujii, "Aerodynamic Multiobjective Design Exploration of a Flapping
Airfoil Using a Navier-Stokes Solver," Journal of Aerospace
Computing, Information, and Communication, Vol. 6, No. 3, pp.
256-270, doi:10.2514/1.35992, 2009.
Aerodynamic knowledge for flapping airfoil is obtained by application
of the multi-objective design exploration framework to a
multi-objective aerodynamic flapping airfoil design optimization
problem. The objectives of the design optimization problem are
1)time-averaged lift coefficient maximization, 2)time-averaged drag
coefficient minimization, and 3)time-averaged required power
coefficient where the airfoil oscillates in plunging and pitching
modes. Pareto-optimal solutions are obtained by a multi-objective
evolutionary optimization and analyzed with the self-organizing map.
Aerodynamic performance of each flapping airfoil is evaluated by a
two-dimensional Navier-Stokes solver. Analysis of the flow over the
extreme Pareto-optimal flapping airfoils provides insights into flow
mechanism for thrust maximization, lift maximization, and required
power minimization. Analysis of the design objectives and design
parameters with the self-organizing map leads to useful guidelines for
practical flapping-wing micro air vehicles. The present result ensures
that the multi-objective design exploration framework is useful
approach for real world design optimization problems.
[15] 久保田 孝,尾川 順子,藤田 和央,大山 聖,藤井 孝蔵,
MELOSのミッション検討と工学的チャレンジ,日本惑星科学会学会誌「遊・星・人」,Vol.18, No.2, 2009.
[16] Yongsheng Lian, Akira Oyama, and Meng-Sing Liou "Progress
in design optimization using evolutionary algorithms for aerodynamic
problems ," Progress in Aerospace Sciences (Online publication),
JPAS235, DOI:10.1016/j.paerosci.2009.08.003, September 24, 2009,
Evolutionary algorithms (EAs) are useful tools in design optimization.
Due to their simplicity, ease of use, and suitability for
multi-objective design optimization problems, EAs have been applied to
design optimization problems from various areas. In this paper we
review the recent progress in design optimization using evolutionary
algorithms to solve real-world aerodynamic problems. Examples are given
in the design of turbo pump, compressor, and micro-air vehicles. The
paper covers the following topics that are deemed important to solve a
large optimization problem from a practical viewpoint: (1) hybridized
approaches to speed up the convergence rate of EAs; (2) the use of
surrogate model to reduce the computational cost stemmed from EAs; (3)
reliability based design optimization using EAs; and (4) data mining of
Pareto-optimal solutions.
[17]
Koichi
Okada, Akira Oyama, Kozo Fujii, and Koji Miyaji, “Computational Study
on Effect of Synthetic Jet Design Parameters,” International Journal of
Aerospace Engineering, Volume 2010, ID 364859, doi:10.1155/2010/364859,
online journal, 2010.
Effects of amplitude and frequency of synthetic jet on the
characteristics of induced jet are investigated. To estimate effects of
the parameters, flow inside the synthetic jet cavity and orifice and
the outer flow is simultaneously simulated using large-eddy simulation
(LES). Comparison of the present LES result with the experimental data
shows that three-dimensional LES of the flow inside the cavity is
essential for accurate estimation of the velocity and velocity
fluctuation of the synthetic jet. Comparison of the present results
under various flow conditions shows that amplitude and frequency can
control profiles of time-averaged vertical velocity and fluctuation of
the vertical velocity as well as damping rate of the induced velocity
and fluctuation.
[18]
Akira Oyama,
Taku
Nonomura, and Kozo Fujii, “Data Mining of Pareto-Optimal Transonic
Airfoil Shapes Using Proper Orthogonal Decomposition,” Journal of
Aircraft, Vol.47, No. 5, pp.1756-1762, doi:10.2514/1.52081, 2010.
A new approach to extract useful design information from shape data of
Pareto-optimal solutions of an optimization problem is proposed and
applied to the optimization of airfoil shapes for good aerodynamic
performance at transonic speed. The proposed approach decomposes shape
data into principal modes and corresponding base vectors using proper
orthogonal decomposition (POD). Advantage of the proposed approach is
that the knowledge one can obtain does not depend on how the shape is
parameterized for design optimization. Analysis of the airfoil shapes
obtained as the Pareto-optimal solutions for aerodynamic performance at
transonic speeds shows that the optimized airfoils can be categorized
into three families (low drag designs, high lift-to-drag designs, and
high lift designs), where the lift is increased by changing the camber
near the trailing edge among the low drag designs while the lift is
increased by moving the lower surface upward among the high lift
designs.
[19]
滑慶則,高木亮治,大山聖,藤井孝藏,山本誠,再使用観測ロケット空力形状に関する設計探査 ,日本機械学会論文集C編,第76巻,第771号,pp.2811-2818,
2010.
Aerodynamic characteristics of a
reusable observation vehicle are computationally investigated under
subsonic and supersonic flight conditions as a preliminary study for
the concept design using a design exploration method and a light CFD
tool. The results show that the simulations with a coarse grid can
accurately estimate the aerodynamic characteristics like axial force
coefficient and the lift to drag ratio. The results of the aerodynamic
shape exploration indicate tradeoff information among objective
functions, and the correlation between design variables and objective
functions. The preliminary knowledge for the aerodynamic shape design
is obtained.
[20] Koichi Okada,
Akira Oyama, Kozo Fujii, and Koji Miyaji, "Computational Study of
Effects of Nondimensional Parameters on Synthetic Jets," Transactions
of the Japan Society for Aeronautical and Space Sciences, Vol. 55, No.
1, pp. 1-11, January, 2012.
[21] Ittetsu Kaneda, Satoshi Sekimoto, Taku Nonomura, Kengo Asada, Akira Oyama, and Kozo
Fujii, "An Effective Three-Dimensional Layout of Actuation Body Force
for Separation Control," International Journal of Aerospace
Engineering, Vol.2012, Article ID 786960, 2012.
[22] 立川智章,大山聖,藤井孝藏,GPを用いた非劣解からの設計情報の抽出,進化計算学会論文誌,Vol. 3 (3),
pp.133-142, 2012.
[23] Weipeng
Li,
Taku Nonomura, Akira Oyama, Kozo Fujii, “Feedback
Mechanism in Supersonic Lminar Cavity Flows,” AIAA Journal, Vol.51,
pp.253-257, 2013.
[24] Ryoji Kojima, Taku Nonomura, Akira Oyama, Kozo Fujii,
“Large-Eddy
Simulation of Low-Reynolds-Number Flow Over Thick and Thin NACA
Airfoils,” Journal of Aircraft, Vol. 50, pp. 187-196, 2013.
[25] Tomoaki
Tatsukawa, Taku Nonomura, Akira Oyama, Kozo Fujii,
“Aerodynamic Design Exploration for Resusable Launch Vehicle Using
Genetic Algorithm with Navier-Stokes Solver,” Transactions of the Japan
Society for Aeronautical and Space Sciences, Vol. 6182, pp. 57-63,
2013.
[26] Tianshu Liu, Akira Oyama, and Kozo Fujii, “Scaling
Analysis of
Propeller-Driven Aircraft for Mars Exploration,” Journal of Aircraft,
Vol.50, No. 5, 2013.
The scaling relations between the performance parameters of
propeller-driven aircraft flying on Mars and
Earth are discussed, including the cruising velocity, power required
for
cruising flight, and propulsive power generated by
propellers. The power ratio criterion for feasible cruising flight of
propeller-driven aircraft on Mars is proposed, and
the relevant design parameters are identified. This criterion is first
used to examine the feasibility of typical and
nontypical aircraft for cruising flight on Mars, and then applied as a
guideline to the preliminary design of the sample
Martian aircraft. In addition, the constraints on the rotational speed
of a propeller in cruising flight onMars are given,
which should be considered in the design of propellers. The methods
developed in this paper are also applicable to
other space exploration aircraft for Venus and Titan.
[27] Masayuki Anyoji, Masato Okamoto, Hidenori Hidaka, Katsutoshi Kondo, Akira Oyama, Hiroki Nagai, Kozo Fujii,
"Control surface effectiveness of low Reynolds number flight vehicles,"
Journal of Fluid Science and Technology, Vol. 9, No. 5, 2014.
[28] Masayuki Anyoji, Taku Nonomura, Hikaru Aono, Akira Oyama, Kozo Fujii,
Hiroki Nagai, Keisuke Asai,
"Computational and Experimental Analysis of a High Performance Airfoil under Low-Reynolds-Number Flow Condition,"
Journal of Aircraft, Vol.51, No.6, pp.1864-1872, doi: 10.2514/1.C032553, 2014.
[29] Masayuki Anyoji, Masato Okamoto, M Higaka, Taku Nonomura, Akira Oyama, and Kozo Fujii,
"Planetary Atmosphere Wind Tunnel Tests on Aerodynamic Characteristics of a Mars Airplane Scale Model,"
Transactions of JSASS Aerospace, Technology Japan, Vol.12, No. ists29, pp. Tk_7-Tk_12, 2014.
[30] Katsutoshi Kondo, Hikaru Aono, Taku Nonomura, Masayuki
Anyoji, Tianshu Liu, Akira Oyama, Kozo Fujii, and Makoto Yamamoto,
"Analysis of Owl-like Airfoil Aerodynamics at Low Reynolds Number Flow,"
Transactions of JSASS Aerospace, Technology Japan, Vol.12, No. ists29, pp. Tk_35-Tk_40, 2014.
[31] Naoya Fujioka, Taku Nonomura, Akira Oyama, Kozo Fujii, and
Makoto Yamamoto, "Computational Analysis of Aerodynamics Performance of Mars Airplane,"
Transactions of JSASS Aerospace, Technology Japan, Vol.12, No. ists29, pp. Tk_1-Tk_5, 2014.
[32] DongHwi Lee, Taku Nonomura, Akira Oyama, and Kozo Fujii,
"Comparison of Numerical Methods Evaluating Airfoil Aerodynamic Characteristics at Low Reynolds Number,"
Journal of Aircraft, Vol.52, No.1, pp.296-306, doi: 10.2514/1.C032721, 2015.
[33] Donghwi Lee, Soshi Kawai, Taku Nonomura, Masayuki Anyoji, Hikaru Aono, Akira Oyama, Keisuke Asai, and Kozo Fujii,
"Mechanisms of Surface Pressure Distribution within a Laminer Separation Bubble at Different Reynolds Numbers,"
Physics of Fluids, Vol. 27, 023602, doi: 10.1063/1.49135000, 2015.
招待講演/基調講演
[1]
大山聖,多目的設計最適化による設計探査と火星航空機の設計への応用多目的最適化設計,第6回多目的最適化ワークショップ,神奈川県横浜市,2006.
[2] Akira Oyama,
Yoshiyuki Okabe, Koji Shimoyama, and Kozo
Fujii, "MULTIOBJECTIVE DESIGN EXPLORATION AND ITS APPLICATION TO AN
AERODYNAMIC FLAPPING AIRFOIL DESIGN," The International Symposium on
Advanced Technology for High Performance Aircraft Core Parts Design
2008," Gyeongsang National University, Jinju, Korea, May 29-30, 2008.
Aerodynamic knowledge for flapping airfoil is obtained by
application of the multi-objective design exploration framework to a
multiobjective aerodynamic flapping airfoil design optimization
problem, where the airfoil oscillates in plunging and pitching modes.
Pareto-optimal solutions are obtained by a multiobjective evolutionary
optimization and analyzed with the self-organizing map. Aerodynamic
performance of each flapping airfoil is evaluated by a two-dimensional
Navier-Stokes solver. Analysis of the flow over the extreme
Pareto-optimal flapping airfoils provides insights into flow mechanism
for thrust maximization, lift maximization, and required power
minimization. Analysis of the design objectives and design parameters
with the self-organizing map leads to useful guidelines for practical
flapping-wing micro air vehicles.
[3] Akira
Oyama, Koji Shimoyama, and Kozo Fujii, "AN APPROACH FOR ROBUST DESIGN:
MULTI-OBJECTIVE SIX SIGMA APPROACH," The International Symposium on
Advanced Technology for High Performance Aircraft Core Parts Design
2008," Gyeongsang National University, Jinju, Korea, May 29-30, 2008.
A new optimization approach for robust design, design for
multi-objective six sigma (DFMOSS) has been developed and applied to a
robust aerodynamic airfoil design for Mars exploratory airplane. The
present robust aerodynamic airfoil design optimization using DFMOSS
successfully showed the trade-off information between maximization and
robustness improvement in aerodynamic performance in a single
optimization run without careful input parameter tuning. The obtained
trade-off information indicated that an airfoil with a smaller maximum
camber improves robustness in terms of lift to drag ratio against the
variation of flight Mach number.
[4] Akira Oyama, "POD-based data mining for Multi-Objective
Design Exploration," International Workshop on Multi-Objective Design
Exploration for Aerospace Engineering, Sendai, Japan, March 19, 2009.
[5] 大
山聖,パレート最適解のもつデー
タからの設計知識の抽出法,第34回関西設計工学研究会,大阪府大阪市,3月,2010.
[6]
大山聖,宇宙科学分野における最適化問題について ーハイブリッドロケットエンジンの
概念設計最適化ー,第35回関西設計工学研究会,大阪府大阪市,8月,2010.
[7]
大山聖,宇宙工学分野における進化計算の適用事例紹介,計測制御システム分野における産学若手交流セミナー,静岡県熱海市,9月,2010.
[8]
藤井孝藏,大山聖,低騒音・低エネルギを実現するプラズマ利用の流体制御,第71回秋季応用物理学会学術講演会特別シンポジウム,長崎県長崎市,9月14
日〜17日,2010.
[9]
大山聖,次期太陽観測衛星軌道の多目的設計探査,第127回NEC C&CシステムSP研究会,2月,2011.
[10]
大山聖,他,火星探査用小型飛行機の検討,日
本航空宇宙学会第42期講演会,4月14日-4月15日,2011.
[11]
大山聖,ハイブリッドロケットの概念設計検討法と非劣解データのモード解析法,日本機械学会2011年度年次大会「先端技術フォーラム」,目黒区,東京
都,9月,2011.
[12] Akira Oyama, Data Mining of Pareto-Optimal Solutions Using Proper
Orthogonal Decomposition," International Workshop on Future of
CFD and Aerospace Sciences, May 23-25, Kobe, Japan, 2012.
[13] 大山聖 ,宇宙工学分野における多目的設計探査の活用事例
,第56回システム制御情報学会研究発表講演会,京都市,京都府,5月21-23日,2012.
[14] Akira Oyama,"Applications of Multiobjective Design Exploration in
JAXA," Workshop on Multi-Objective Design Exploration for Real-World
Design Optimization Problems 2012, Karuizawa, Nagano, Japan, Dec.
16-17, 2012.
[15]
大山聖,火星探査航空機ワーキンググループ,世界初の火星飛行機の実現を目指して,第13回宇宙科学シンポジウム,神奈川県相模原市,1月8日9日,
2013.
[16]
大山聖,火星飛行機,日本航空宇宙学会北部支部2013年講演会ならびに第14回再使用型宇宙推進系シンポジウム,仙台市,宮城県,3月14日15日,
2013
[17]
大山聖,多目的設計探査による設計知見の抽出,統計数理研究所研究会シミュレーション科学と統計科学の間,東京都立川市,3月18日,2012.
[18]
大山聖,スーパーコンピュータ「京」を用いた多目的設計探査による設計手法の革新とJAXAでの試み,システム制御情報学会セミナー2013,2013.
[19] 大山聖,LESを用いたロケット射点形状の多目的空力音響設計探査,第4回分野4次世代ものづくりシンポジウム,2013.
[20] 大山聖,京コンピュータで可能になった多目的設計探査の新展開 - 空力音響多目的設計最適化と多数目的設計最適化 -
,ターボ機械協会第112回セミナー「CFD最新動向と最適化技術の新展開」,2014年2月14日.
[21] 大山聖,多数の目的関数を持つ設計最適化手法の効率的解法,文部科学省「HPCI戦略プログラム」分野4次世代ものづくり第1回統合ワークショップ「共通基盤・先端アプリ・PF」部門 ,東京大学生産技術研究所,2014年3月13日.
[22] 大山聖,スーパーコンピュータ「京」を用いた多目的設計探査の革新,第4回知能工学部会研究会「賢さの先端研究会」 / 第51回システム工学部会研究会,近畿大学東大阪キャンパス,2014年8月29日.
[23] 竹内伸介,佐藤英一,大山聖,永井大樹,LPSO型Mg合金を用いた火星探査航空機用軽量翼構造の試作,第58回日本学術会議材料工学連合講演会,京都府京都市,2014年10月27-28日.
[24] 大山聖,「京」を利用した多目的設計探査の事例紹介,第5回分野4次世代ものづくりシンポジウム,兵庫県神戸市,2014年12月5日.
[25] 大山聖,ものづくりのための多目的設計探査,文部科学省「HPCI戦略プログラム」分野4次世代ものづくり第2回統合ワークショップ,兵庫県神戸市,2014年12月5日.
[26] 小野謙二,大山聖,ポスト京に向けた取り組みについて,文部科学省「HPCI戦略プログラム」分野4次世代ものづくり第2回統合ワークショップ,兵庫県神戸市,2014年12月5日.
[27] 大山聖,小野謙二,上流設計プラットフォーム,第1回ポスト「京」重点課題E・G合同シンポジウム,東京大学生産技術研究所,2015年3月20日.
国際会議
[1]
Shigeru Obayashi, and Akira Oyama,
“Three-dimensional Aerodynamic Optimization with Genetic Algorithm,”
Proceedings of the Third ECCOMAS Computational Fluid Dynamics
Conference, John Wiley & Sons Ltd, Chichester, the Third ECCOMAS
Computational Fluid Dynamics Conference, Paris, France, September 9-13,
1996.
A Genetic Algorithm has been applied to optimize a wing shape for
generic subsonic transportation aircraft by using Navier-Stokes
computations. To overcome enormous computational time necessary for
this optimization, Numerical Wind tunnel at National Aerospace
Laboratory, a parallel vector machine with 166 processing elements, was
used. Design results indicate feasibility of the present approach for
the aerodynamic optimization in advanced computational environments.
[2] Akira Oyama, Shigeru
Obayashi, Kazuhiro Nakahashi, and Takashi Nakamura, “Transonic Wing
Optimization Using Genetic Algorithm,” AIAA Paper 97-1854, AIAA 13th
Computational Fluid Dynamics Conference, Snow mass, Colorado, June 1997.
A Genetic Algorithm (GA) has been applied to optimize a
transonic
wing shape for generic transport aircraft. A three-dimensional
compressible Navier-Stokes (N-S) solver is used to evaluate aerodynamic
performance. Designed wings show a tradeoff between an increase of the
airfoil thickness driven by a structural constraint and a reduction of
the wave drag produced by a shock wave. The present result indicates
that GA has found a best feasible solution in the given design
constraints.
[3] Akira Oyama, Shigeru Obayashi,
Kazuhiro Nakahashi, and Takashi Nakamura, “Euler/Navier-Stokes
Optimization of Supersonic Wing Design Based on Evolutionary
Algorithm,” Proceedings of the 10th International Conference on
Parallel CFD, Hsinchu, Taiwan, May 1998.
This paper presents aerodynamic shape optimization of a supersonic
wing
for supersonic civil transportation (SST) using an Evolutionary
Algorithm (EA) coupled with an Euler/Navier-Stokes code. To overcome
enormous computational time necessary for the design, aerodynamic
evaluations are parallelized on Numerical Wind Tunnel (NWT) at National
Aerospace Laboratory, a parallel vector machine with 166 processing
elements. Parallelization of function evaluations in EA is
straightforward and its performance is extremely good since most of
computational time is used by flow computations. The design result
indicates that the present EA successfully minimizes both the induced
drag and the volume wave drag in the given design space.
[4] Akira Oyama, Shigeru
Obayashi,
Kazuhiro Nakahashi, and Naoki Hirose, “Coding by Taguchi Method for
Evolutionary Algorithms Applied to Aerodynamic Optimization,”
Proceedings of the Fourth ECCOMAS Computational Fluid Dynamics
Conference, John Wiley & Sons Ltd, Chichester, the Fourth ECCOMAS
Computational Fluid Dynamics Conference, Athens, Greece, September 1998.
A new coding technique using Taguchi method is proposed for
Evolutionary Algorithm (EA) applied to an aerodynamic optimization.
Taguchi method is used to investigate interactions of design variables
and to determine the appropriate coding structure for EA in advance. EA
coupled with the new coding technique is then applied to aerodynamic
design of a transonic wing. Three-dimensional Navier-Stokes calculation
is used for estimation of wing performance.
[5] Shigeru Obayashi, Kazuhiro
Nakahashi, Akira Oyama, and Nobuhisa Yoshino, “Design Optimization of
Supersonic Wings Using Evolutionary Algorithms,” Proceedings of the
Fourth ECCOMAS Computational Fluid Dynamics Conference, John Wiley
& Sons Ltd, Chichester, the Fourth ECCOMAS Computational Fluid
Dynamics Conference, Athens, Greece, September 1998.
Feasibility of evolutionary computations for supersonic wing design
optimization was demonstrated by the single-objective aerodynamic
optimization and multiobjective, multidisciplinary optimization. The
aerodynamic optimization problem seeks an optimal supersonic wing shape
using the Euler equations. The multidisciplinary optimization problem
seeks an optimal supersonic wing planform shape using linearized
aerodynamics and wing weight algebraic estimation.
[6] Akira Oyama, Shigeru Obayashi, and Kazuhiro Nakahashi,
“Encoding Wing Design Parameters for Evolutionary Optimization,” the
36th Aircraft Symposium, International Session, Yokohama, Japan,
Proceedings of Aircraft Symposium, pp. 757-760, October 1998.
A new coding technique using factorial design is
proposed for
Evolutionary Algorithm(EA) applied to an aerodynamic optimization.
Coding structure for EA is determined by the epistasis analysis using
the factorial design in advance. The present epistasis analysis is
applied to aerodynamic design of a transonic wing. The resulting EA
succeeded in finding a good compromised design.
[7] Akira Oyama, Shigeru
Obayashi, Kazuhiro Nakahashi, and Naoki Hirose “Fractional Factorial
Design of Genetic Coding for Aerodynamic Optimization,” AIAA Paper
99-3298, AIAA 14th Computational Fluid Dynamics Conference, Norfolk,
Virginia, June 28 - July 1, 1999.
Evolutionary Algorithms (EAs) based on structured coding have been
proposed for aerodynamic optimization of wing design. Fractional
factorial design is used to investigate interactions of the design
variables to determine the appropriate coding structure for EAs in
advance. To improve efficiency and accuracy of this approach,
parameterization techniques of airfoil shapes are first tested through
reproduction of a NASA supercritical airfoil. Their performance is also
examined by performing aerodynamic design optimization coupled with a
two-dimensional Navier-Stokes code. Finally, three-dimensional wing
design is optimized based on a potential flow code and the design
result is presented.
[8] Akira Oyama, Shigeru Obayashi,
and
Kazuhiro Nakahashi, “Wing Design Using Real-Coded Adaptive Range
Genetic Algorithm,” Proceedings of 1999 IEEE International Conference
on Systems, Man, and Cybernetics, 1999 IEEE International Conference on
Systems, Man, and Cybernetics, Tokyo, Japan, October 1999.(2)
Real-coded Adaptive Range Genetic Algorithms (ARGAs) have been
developed. The real-coded ARGAs posses both advantages of the
binary-coded ARGAs and the use of the floating point representation to
overcome the problems of having a large search space that requires
continuous sampling. First, the efficiency and the robustness of the
proposed approach have been demonstrated by using a typical test
function. Then the proposed approach has been applied to an aerodynamic
airfoil shape optimization problem. The results confirm that the
real-coded ARGAs consistently find better solutions than the
conventional real-coded GAs do. The design result is considered to be
the global optimal and thus ensures the feasibility of the real-coded
ARGAs in aerodynamic designs.
[9] Akira Oyama, Shigeru
Obayashi,
Kazuhiro Nakahashi, and Takashi Nakamura, "Aerodynamic Optimization of
Transonic Wing Design Based on Evolutionary Algorithm," Proceedings of
Third International Conference on Nonlinear Problems in Aviation and
Aerospace Methods and Software, Third International Conference on
Nonlinear Problems in Aviation and Aerospace Methods and Software,
DAYTONA BEACH, FLORIDA, May 2000
Evolutionary Algorithm (EA) is applied to a practical
three-dimensional
shape optimization for aerodynamic design of an aircraft wing.
Aerodynamic performances of the design candidates are evaluated by
using the three-dimensional compressive Navier-Stokes equations. A
structural constraint is introduced to avoid an apparent solution of
zero thickness wing for low drag in high speeds. To overcome enormous
computational time necessary for the optimization, the computation is
parallelized on Numerical Wind Tunnel at National Aerospace Laboratory
in Japan, a parallel computer with 166 vector-processing elements. The
results ensure the capability of the EA in handling large-scale design
optimizations.
[10] Akira Oyama,
"Multidisciplinary Optimization of Transonic Wing Design Based on
Evolutionary Algorithms Coupled with CFD solver, "CD-Rom Proceedings of
ECCOMAS 2000, European Congress on Computational Methods in Applied
Sciences and Engineering, Barcelona, Spain, September 2000.
Evolutionary Algorithms (EAs) were applied to multidisciplinary
transonic wing design optimizations. Aerodynamic performances of the
design candidates were evaluated by using the three-dimensional
compressive Navier-Stokes equations to guarantee an accurate model of
the flow field. The wing structure is modeled on a box-beam to estimate
the wing thickness and wing weight. To overcome enormous computational
time necessary for the optimization, the computation was parallelized
on Numerical Wind Tunnel at NAL in Japan and NEC SX-4 computers at
Computer Center of Tohoku University in Japan. First, a single
objective wing design optimization was demonstrated by maximizing L/D
with a structural constraint using a real-coded Adaptive Range Genetic
Algorithm (ARGA). Because the structural constraint imposed a tradeoff
between minimizations of the induced drag and the wave drag, the
present ARGA found a compromised but reasonable design. Then, a
multiobjective wing design optimization is performed by minimizing both
drag and weight with a constraint on CL using a Multiobjective
Evolutionary Algorithm (MOEA). Due to the tradeoff between minimization
of aerodynamic drag and minimization of weight of wing structure, the
solution to this problem is not a single point but a set of compromised
designs. The present MOEA successfully captured these solutions that
revealed the tradeoff information. These results showed that EAs were
promising approach to multidisciplinary optimization problems.
[11] Akira Oyama, Shigeru Obayashi,
and
Takashi Nakamura, "Real-Coded Adaptive Range Genetic Algorithm Applied
to Transonic Wing Optimization," Lecture Notes in Computer Science
1917, Parallel Problem Solving from Nature - PPSN VI, Springer, pp.
712-721, Parallel Problem Solving from Nature VI, PPSN VI, Paris,
France, 2000.
Real-coded Adaptive Range Genetic Algorithms (ARGAs) have been
applied
to a practical three-dimensional shape optimization for aerodynamic
design of an aircraft wing. The real-coded ARGAs possess both
advantages of the binary-coded ARGAs and the floating-point
representation to overcome the problems of having a large search space
that requires continuous sampling. The results confirm that the
real-coded ARGAs consistently find better solutions than the
conventional real-coded Genetic Algorithms do.
[12] Shigeru Obayashi, Akira Oyama, and Takashi Nakamura,
"Transonic
Wing Design Based on Evolutionary Algorithms Coupled with CFD Solver,"
Third International Symposium on High Performance Computing, Tokyo,
Japan, October 2000.
[13] Akira Oyama, and
Meng-Sing
Liou, "Multiobjective Optimization of Rocket Engine Pumps Using
Evolutionary Algorithm," CD-ROM Proceedings of AIAA CFD Conference,
AIAA-2001-2581, 15th AIAA Computational Fluid Dynamics Conference,
Anaheim, California, June 11-14, 2001.
Design optimization method for turbopumps of cryogenic rocket
engines
has been developed. Multiobjective Evolutionary Algorithm is used for
multiobjective pump design optimizations. Performances of design
candidates are evaluated by using the meanline pump flow modeling
method based on the meanline pump flow modeling method based on the
Euler turbine equation coupled with empirical correlations for rotor
efficiency.
To demonstrate the feasibility of the present approach, single stage
centrifugal pump design and multistage pump design optimizations are
presented. In both cases, present method obtains very reasonable
Pareto-optimal solutions that include some designs outperforming the
original design in total head as well as input power by 1%. Detailed
observation of the design results also reveals some important design
policies in turbopump design of cryogenic rocket engines. These results
ensure the feasibility of EA-based design optimization method in this
field.
[14] Akira Oyama, and
Meng-Sing
Liou, "Multiobjective Optimization of a Multi-Stage Compressor Using
Evolutionary Algorithm," AIAA-2002-3535, 38th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit, Indianapolis, Indiana, July 7-10,
2002.
A multiobjective design optimization tool for multistage compressors
has been developed. Multiobjective Evolutionary Algorithm is used to
handle multiobjective design optimization problems. Performances of
compressors are evaluated by using the axisymmetric through-flow code
UD0300M that employs the streamline curvature method. To demonstrate
feasibility of the present method, a multiobjective optimization of a
four-stage compressor design was performed for maximization of the
overall isentropic efficiency and the total pressure ratio. Total
pressure and solidities at the rotor trailing edges, and flow angles
and solidities at the stator trailing edges are considered as design
parameters. The present method obtained hundreds of reasonable and
uniformly distributed Pareto-optimal solutions that outperformed the
baseline design in both objectives. Detailed observation of the
Pareto-optimal designs revealed some design criteria for multi-stage
compressor designs.
[15]Akira Oyama, Meng-Sing
Liou,
and Shigeru Obayashi, "Transonic Axial-Flow Blade Shape Optimization
Using Evolutionary Algorithm and Three-Dimensional Navier-Stoke
Solver," AIAA-2002-5642, 9th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Atlanta, Georgia, September 4-6, 2002.
A reliable and efficient aerodynamic design optimization tool using
evolutionary algorithm has been developed for transonic compressor
blades. A real-coded adaptive-range genetic algorithm is used to
improve efficiency and robustness in design optimization. To represent
flow fields accurately and produce reliable designs, three-dimensional
Navier-Stokes computation is used for aerodynamic analysis.
To ensure feasibility of the present method, aerodynamic redesign of
NASA rotor67 is demonstrated. Entropy production is considered as the
objective function to be minimized. The computation is parallelized on
the SGI ORIGIN2000 cluster at Institute of Fluid Science, Tohoku
University, by distributing flow analyses of design candidates to 64
processing elements. The present method successfully obtained a design
that reduced entropy production by more than 19% compared with the
rotor67 while satisfying constraints on the mass flow rate and the
pressure ratio. The use of the present tool for turbomachinery blade
design is demonstrated to allow designers to achieve higher aerodynamic
efficiency, while shortening design cycle and reducing design costs
significantly.
[16] Akira Oyama, Meng-Sing
Liou,
and Shigeru Obayashi, "High-Fidelity Swept and Leaned Rotor Blade
Design Optimization Using Evolutionary Algorithm," AIAA-2003-4091, 16th
AIAA Computational Fluid Dynamics Conference, Orlando, Florida, June
23-26, 2003.
In this paper, aerodynamic blade design optimization for a transonic
axial compressor has demonstrated by using an
evolutionary-algorithm-based high-fidelity design optimization tool.
The present method uses a three-dimensional Navier-Stokes solver named
TRAF3D for aerodynamic analysis to represent flow fields accurately and
the real-coded ARGA for efficient and robust design optimization. The
present method successfully obtained a design that reduced entropy
production by more than 16% compared with the rotor67 while satisfying
constraints on the mass flow rate and the pressure ratio. This study
gave some insights into design optimization of a swept and leaned rotor
blade for transonic axial compressors.
[17] Akira Oyama, and Meng-Sing
Liou, "A Multi-Stage Compressor Design Optimization Using CFD," The 8th
Japan-Russia Joint Symposium on Computational Fluid Dynamics, September
25, 2003.
A new constraint-handling method based on Pareto-optimality concept
for
multiobjective multi-constraint design optimization problems has been
proposed. The proposed method does not need any constants to be tuned
for constraint handling. In addition, the present method does not use
weighted-sum of constraints and thus does not need tuning of weight
coefficients and is efficient even when the amount of violation of each
constraint is significantly different. The proposed approach is
demonstrated to be remarkably robust than the dynamic penalty approach
and other dominance-based approaches through the optimal design of a
welded beam and conceptual design optimization of a two-stage-to-orbit
space plane.
[18] Yong-Sheng Lian, Meng-Sing
Liou, and Akira Oyama, "An Enhanced Evolutionary Algorithm with a
Surrogate Model," The 2004 Genetic and Evolutionary Computation
Conference, Bird-of-a-feather Workshop on Application of Hybrid
Evolutionary Algorithms to Complex Optimization Problems, Seattle,
Washington, June 26-30, 2004.
In this paper we present an enhanced evolutionary algorithm (EA) to
solve computationally expensive design optimization problems. In this
algorithm we integrate a genetic algorithm (GA) with a local search
method to expedite convergence of the GA. We first use a GA to generate
a population of data by evaluating real functions, then we construct
computationally cheap surrogate models based on the available data.
Thereafter, we perform gradient-based local searches on the surrogate
models in lieu of the real functions. We apply the GA and
gradient-based method alternatively until an optimum is reached. To
guarantee convergence to the original problem, we use a trust region
management to handle surrogate models. We investigate the number
of points used to construct the surrogate model, number of surrogate
model constructed, and number of local search performed. Our numerical
results, based on two single-objective problems and one multi-objective
optimization problem, demonstrate the advantages of the hybrid GA over
pure GAs.
[19] Akira Oyama, and Kozo
Fujii,
"Airfoil Design Optimization for Airplane for Mars Exploration," J-55,
The 3rd China-Japan-Korea Joint Symposium on Optimization of Structural
and Mechanical Systems, CJK-OSM3, Kanazawa, Ishikawa, October 30-
November 2, 2004.
Aerodynamic design optimization of an airfoil for the Mars
exploration
airplane has been demonstrated by using an evolutionary algorithm. The
adaptive range genetic algorithm is used for efficient and robust
design optimization. Two-dimensional Navier-Stokes solver is used for
accurate aerodynamic performance evaluation. The present computation is
parallelized on the SX-6 vector computers in Institute of Space and
Aeronautical Science (ISAS) / Japan Aerospace Exploration Agency
(JAXA). The optimized airfoil achieved very high aerodynamic
performance. The optimum airfoil for Mars exploration airfoil has
extremely thin airfoil thickness and strong camber while an optimum
airfoil for typical airplane fly on Earth has substantial airfoil
thickness in the front. However, a thin airfoil has disadvantages such
as structural weight and fuel tank space (if an engine is used for
propulsion). The present optimization indicates necessity of
multiobjective design optimization for practical airfoil design for
Mars exploration airplane.
[20] Nobuyoshi
Fujimatsu, Yoshiaki Tamura, Akira Oyama and Kozo Fujii, "Software for
Molecular-sensing Application-oriented Postprocessing," Proceedings of
International Workshop on Molecular Imaging for Interdisciplinary
Research, Sendai, Japan, November 8-9, 2004, pp.94-95.
[21] Hirofumi
Ouchi, Masato Ito, Akira Oyama and Kozo Fujii, Application of
Ru(U)-Complex- Based PSP Measurement To Engineering Problems,
Proceedings of International Workshop on Molecular Imaging for
Interdisciplinary Research, Sendai, Japan, November 8-9, 2004.
[22] Akira Oyama, Kozo Fujii,
Koji
Shimoyama, and Meng-Sing Liou, "Pareto-Optimality-Based
Constraint-Handling Technique and Its Application to Compressor
Design," AIAA2005-4983, the 17th AIAA Computational Fluid Dynamics
Conference, Toronto, Ontario, June 6-9, 2005.
A new constraint-handling technique based on
Pareto-optimality
concept is proposed for evolutionary algorithms to efficiently deal
with multiobjective multi-constraint design optimization problems. The
essence of the proposed method is to apply non-dominance concept based
on constraint function values to infeasible designs and to apply
non-dominance concept based on objective function values to feasible
designs. The proposed technique does not need any constants to be tuned
as the proposed technique does not use weighted-sum of constraints.
First, the proposed approach is demonstrated to be remarkably more
robust than traditional constraint-handling techniques through the
optimal design of a welded beam and conceptual design optimization of a
two-stage-to-orbit space plane. Next, high-fidelity aerodynamic design
optimization of an axial compressor blade design is demonstrated.
[23] Kozo Fujii, Akira Oyama, Nobuyuki Tsuboi, Motoo, Tsukada,
Humihiro
Ouchi, Masato Ito, and Koichi Hayashi, "Flow Field Analysis of
Under-Expanded Supersonic Jets Impinging on an Inclined Flat Plate -
Analysis with PSP/Schlieren Images and CFD Simulations", Proceedings of
2005 ASME Fluids Engineering Division Summer Meeting and Exhibition,
pp. 683-691, 2005 ASME Fluids Engineering Division Summer Meeting and
Exhibition, FEDSM2005, Houston, Texas, June 19-23, 2005. (3)
Flow fields of Mach number 2.2 jet impinging on an inclined
flat
plate are experimentally investigated using the Pressure Sensitive
Paints (PSP) and Schlieren flow visualization. The flow filed structure
is mainly determined by two geometrical parameters (nozzle-plate
distance and plate angle against the jet) and one flow parameter
(pressure ratio). The results suggest that all the observed flow fields
can actually be classified into three types of flow structure based on
the three parameters above. As an extension of the authors' earlier
work, experiments are carried out for higher plate angles. The new
results show the effectiveness and limitation of the classification
that we proposed. To find out the flow structure, some of the flow
fields are computationally simulated. Good agreement of the pressure
distributions with the experiment validates the simulation. Although
analysis so far is limited, the result reveals three dimensional
complex flow structure that created pressure peaks over the plate
surface.
[24] Koji Shimoyama, Akira Oyama,
and
Kozo Fujii, "A New Efficient and Useful Robust Optimization Approach
-Design for Multi-Objective Six Sigma," 2005 IEEE Congress on
Evolutionary Computation Proceedings, 1, pp. 950-957, 2005 IEEE
Congress on Evolutionary Computation, 2005 IEEE CEC, Edinburgh, United
Kingdom, September 2-5, 2005. (5)
An efficient and useful robust optimization approach, design
for
multi-objective six sigma (DFMOSS), has been developed. The DFMOSS
couples the ideas of design for six sigma (DFSS) and multi-objective
genetic algorithm (MOGA) to solve drawbacks of DFSS. DFMOSS obtains
trade-off solutions between optimality and robustness in one
optimization. In addition, it does not need careful parameter tuning.
Robust optimizations of a test function and welded beam design problem
demonstrated that DFMOSS is more effective and more useful than DFSS.
[25] Akira Oyama, Koji
Shimoyama, and
Kozo Fujii, "New Constraint-Handling Method for Multi-Objective
Multi-Constraint Evolutionary Optimization and Its Application to Space
Plane Design," CD-ROM Proceedings of EUROGEN 2005, Evolutionary and
Deterministic Methods for Design, Optimization and Control with
Applications to Industrial and Societal Problems, EUROGEN 2005, Munich,
Germany, 12-14 September 2005.
A new constraint-handling method based on Pareto-optimality
concept
for multiobjective multi-constraint design optimization problems has
been proposed. The proposed method does not need any constants to be
tuned for constraint handling. In addition, the present method does not
use weighted-sum of constraints and thus does not need tuning of weight
coefficients and is efficient even when the amount of violation of each
constraint is significantly different. The proposed approach is
demonstrated to be remarkably robust than the dynamic penalty approach
and other dominance-based approaches through the optimal design of a
welded beam and conceptual design optimization of a two-stage-to-orbit
space plane.
[26] Akira Oyama, and Kozo Fujii,
"A
Study on Airfoil Design for Future Mars Airplane," AIAA-2006-1484, 44th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January
9-12, 2006.
An optimum airfoil design for future Mars airplane for Mars
exploration is obtained by evolutionary computation coupled with a
two-dimensional Reynolds-averaged Navier-Stokes solver. The optimized
airfoil design is also compared with other airfoil designs optimized at
different Reynolds number or at different Mach number to discuss
Reynolds number and Mach number effects on airfoil design. These
results indicate same important design policies in airfoil design
optimization in regard to Reynolds number and Mach number effects.
[27] Masato Ito, Akira Oyama, Kozo Fujii, and
Koichi Hayashi, "Flow Field Analysis of Jet Impinging on an
Inclined Flat Plate at High Plate Angles", AIAA-2006-1047, 44th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12,
2006.
Flow fields of the supersonic jets impinging on an inclined flat
plate
at high plate-angles are experimentally investigated using surface
pressure measurement with pressure sensitive paint and Schlieren flow
visualization. While Type I flow type is dominant at high plate angles,
the present research found a new flow type “TYPE I with bubble” at
plate angle between 60 and 80 degrees. The flow classification
according to L/Ls’ and plate angle indicated that the constant
x/L’s curve doesn’t represent the boundary of Type I and Type II
anymore at high plate angles between 60 and 90 probably because Type II
flows at low plate angles and high plate angles is different phenomena.
This study also indicates that the curve dividing Type I and Type I
with bubble regions is same as the curve dividing Type II and Type II
with bubble regions.
[28] Genta
Imai, Kozo Fujii, and Akira Oyama, "Computational Analyses of
Supersonic Flows Over a Delta Wing at High Angles of Attack," 2.5S, the
25th International Congress of the Aeronautical Sciences, ICAS 2006,
Hamburg, Germany, September 3-8, 2006.
Supersonic flows over a 65-degrees sweep delta wing with a sharp
leading edge at high angles of attack are computationally
studied. Computational simulations with various free-stream Mach
numbers show that there is a sudden change in flow fields between the
free-stream Mach number of 0.8 and 1.2. Visualized images of the
simulation results at different flow conditions show that this
nonlinear behavior occurs as expansion waves from the leading edge
accelerate the flow and shift the share layer closer to the surface
when the Mach number at the leading edge becomes supersonic. The
results also show that aerodynamic characteristics have a different
trend below and above the free-stream Mach number of 1.0. The sudden
change occurs not at the boundary of the classification proposed by the
former studies. When the free-stream Mach number becomes supersonic,
components of the three-dimensional flow structure such as primary
vortex, vortex breakdown and windward flow have different nature, which
lead to the nonlinear behavior of aerodynamic characteristics.
[29] Koji
Shimoyama, Akira Oyama, and Kozo Fujii, "Robust Aerodynamic Airfoil
Design Optimization against Wind Variations for Mars Exploratory
Airplane," IAC-06-A3.P.3.07, the 57th International Astronautical
Congress, IAC 2006, Valencia, Spain, October 2-6, 2006.
Robust aerodynamic airfoil design optimizations of Mars exploratory
airplane against wind variations have been carried out by using DFMOSS
coupled with the CFD simulation. The present robust optimization
successfully found the airfoil designs with robust aerodynamic
performances against wind variations. Obtained airfoil design
information about the optimality and the robustness of aerodynamic
performances indicated that an airfoil with smaller camber can improve
the robustness in lift to drag ratio against the variation of flight
Mach number, and an airfoil with larger curvature near the shock wave
location can improve the robustness in pitching moment against the
variation of flight Mach number.
[30] Koji
Shimoyama, Akira Oyama, and Kozo Fujii, "Multi-Objective Optimization
for Robust Airfoil Design Considering Design Errors and Uncertainties,"
Proceedings of the 3rd International Conference on Flow Dynamics, pp.
237-238, The 3rd International Conference on Flow Dynamics, ICFD 2006,
Matsushima, Japan, November 7-9, 2006.
[31] Koji Shimoyama, Akira Oyama, and Kozo Fujii,
"Multi-Objective Six Sigma Approach Applied to Robust Airfoil Design
for Mars Airplane," 9th AIAA Non-Deterministic Approaches Conference,
Honolulu, Hawaii, AIAA-2007-1966, 23-26 April, 2007.
A new optimization approach for robust design, design for
multi-objective six sigma (DFMOSS) has been developed and applied to
robust aerodynamic airfoil design for Mars exploratory airplane. The
present robust aerodynamic airfoil design optimization using DFMOSS
successfully showed the trade-off information between maximization and
robustness improvement in aerodynamic performance by a single
optimization run without careful input parameter tuning. The obtained
trade-off information indicated that an airfoil with a smaller maximum
camber improves robustness of lift to drag ratio, and that with a
larger curvature near the shock wave location improves robustness of
pitching moment against the variation of flight Mach number.
[32] Akira Oyama, Yoshiyuki Okabe, Kozo Fujii, and
Koji Shimoyama, "A Study on Flapping Motion for MAV Design Using Design
Exploration," AIAA Infotech@Aerospace 2007 Conference and Exhibit,
Rohnert Park, California, AIAA-2007-2878, May 7-10, 2007
Aerodynamic knowledge for practical flapping-wing micro air vehicle
(MAV) design is obtained by application of the design exploration
framework coupled with CFD to a multiobjective aerodynamic design
optimization problem of two-dimensional flapping motion of an airfoil.
Lift and thrust are maximized while required power is minimized in the
design problem. Pareto-optimal solutions are obtained by a
multiobjective evolutionary optimization and analyzed with the
self-organizing map. Aerodynamic performance of each flapping
motion is evaluated by a two-dimensional Navier-Stokes solver.
The result reveals tradeoff information between each objective and
effect of each design parameters on them. Analysis of the time
histories of lift, thrust, and required power coefficients and
corresponding pressure coefficient distribution of the extreme
Pareto-optimal solutions leads to useful guidelines for the lift
maximization, thrust maximization, and required power minimization.
[33] Akira Oyama, Masato Ito, Genta Imai, Seiji
Tsutsumi, Nobuo Amitani, and Kojo Fujii, "Mach Number Effect on
Flowfield over a Delta Wing in Supersonic Region," 46th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2008-0354, January
7-10, 2008.
To understand Mach number effect on flow field over a delta wing
with
blunt leading edge in supersonic and high angle of attack region, wind
tunnel experiments of a 65° delta wing are performed in supersonic and
high angle of attack flow conditions at the JAXA’s transonic /
supersonic wind tunnel. Oil flow for surface flow visualization,
pressure sensitive paint for surface pressure distribution measurement,
and Schlieren images for shock wave visualization are used. The
present results indicate that a delta wing with blunt leading edge can
be mixed flow of two different types of flow structure in supersonic
and high angle of attack flow region and the location of the boundary
of the two types of flow moves toward the apex of the wing as the
free-stream Mach number increases.
[34] Akira Oyama, Genta Imai, Akira Ogawa, and Kozo
Fujii, "Aerodynamic Characteristics of a Delta Wing at High Angles of
Attack," 15th AIAA International Space Planes and Hypersonic Systems
and Technologies Conference, Dayton, Ohio, AIAA-2008-2563, April 28 -
May 1, 2008.
[35]Naoki
Tani, Akira Oyama, and Nobuhiro Yamanishi, "Multi Objective Design
Optimization of Rocket Engine Turbopump Turbine," 5th International
Spacecraft Propulsion Conference / 2nd International Symposium on
Propulsion for Space Transportation, Crete, Greece, May 5-8, 2008.
JAXA is now planning to develop a next generation booster engine
named
LE-X, which is a successor of LE-7A. From an engine cycle study, the
LE-X requires a high efficiency turbine. To achieve this requirement, a
feasibility study of multi-objective design optimization with generic
algorithm was applied to the turbine blade shape. The optimized results
show strong tradeoff between axial-horsepower and entropy-rise within
the stage. By use of Self-Organizing MAP (SOM) and correlation
function, it is revealed that this tradeoff is primarily derived from
outlet blade design, and inlet blade shape also has an influence to
axial-horsepower improvement.
[36]Tomoaki
Tatsukawa, Akira Oyama, and Kozo Fujii, "Comparative Study of Data
Mining Methods for Aerodynamic Multiobjective Optimizations," 8th World
Congress on Computational Mechanics (WCCM8) / 5th European Congress on
Computational Methods in Applied Sciences and Engineering
(ECCOMAS2008), Venice, Italy, June 30 - July 5, 2008.
[37] Roel
Muller, Akira Oyama, Kozo Fujii, and Harry Hoeijmakers, "Propulsion by
an Oscillating Thin Airfoil at Low Reynolds Number," The Fifth
International Conference on Computational Fluid Dynamics, Seoul, Korea,
July 7-11, 2008.
This paper describes an investigation of the mechanisms producing
thrust for an airfoil performing a pitching or heaving motion in a low
Reynolds-number flow (Re=1000, based on chord length) by analysis of
numerically obtained flow fields and forces on the airfoil.
[38] Naoki
Tani, Akira Oyama, Koichi Okita, and Nobuhiro Yamanishi, "Feasibility
Study of Multi Objective Shape Optimization for Rocket Engine Turbopump
Blade Design," AIAA-2008-4659, 44th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit, Hartford, CT, July 14-16, 2008.
JAXA is now planning to develop a next generation booster engine
named
LE-X, which is a successor of LE-7A. From an engine cycle study, the
LE-X requires a relatively high efficiency turbopump. To achieve this
requirement, a feasibility study of design optimization with generic
algorithm was applied to the impeller and turbine blade shape. As the
first step, single objective optimization was carried out on the
impeller blade design, and the second one was a multi objective
optimization on the turbine blade shape. It was concerned that
optimization may not be effective in such a highly loaded component,
however, each of the optimized result have shown improvement on
performance. Especially, multi objective optimization can show tradeoff
information for several important parameters, therefore, it can be said
that such method is quite useful for the improvement or the developing
of high efficiency turbopumps.
[39] Keiichiro
Fujimoto, Akira Oyama, Kozo Fujii, Nobuyuki Iizuka, and Koichi Okita,
"Visualization and Verification Method for Failure Network Analysis of
Space Launch Vehicles," DETC2008-49656, Proceedings of IDETC/CIE 2008,
New York, New York, August 3-6, 2008.
Comprehensive failure network analysis method was studied for liquid
rocket engine development which includes failure propagation through
various types of component interfaces in order to achieve exhaustive
enumeration of possible failures and to identify actions to eliminate
or reduce the potential failure. New failure network visualization
method was developed in order to make it easier to understand
complicated failure propagation mechanism among multiple system levels.
Verification analysis method is developed in which it is verified all
of user-specified component interfaces are contained in the failure
network analysis result. The perceived component interface is specified
by the analyzer and the failure propagation in the result of failure
analysis is summarized in two separate N2 charts. By comparing with
these two N2 charts, unperceived component interface and the
unconsidered failure propagation can be found. It is found to be
promising approach to achieve exhaustive enumeration especially for
forgettable component interface.
[40] Kengo
Asada, Yoshihiko Ninomiya, Akira Oyama, and Kozo Fujii, "Airfoil Flow
Experiment on the Duty Cycle of DBD Plasma Actuator," AIAA-2009-0531,
47th AIAA Aerospace Sciences Meeting, Orlando, Florida, January 5-8,
2009.
[41] Akira
Oyama, Taku Nonomura, and Kozo Fujii, "Data Mining of Pareto-Optimal
Transonic Airfoil Shapes Using Proper Orthogonal Decomposition,"
AIAA-2009-4000, 19th AIAA Computational Fluid Dynamics, San Antonio,
Texas, June 22-25, 2009.
A new approach to extract useful design information from
Pareto-optimal
solutions of optimization problems is proposed and applied to an
aerodynamic transonic airfoil shape optimization. The proposed approach
enables an analysis of line, face, or volume data of all Pareto-optimal
solutions such as shape and flow field by decomposing the data into
principal modes and corresponding base vectors using proper orthogonal
decomposition (POD). Analysis of the shape and surface pressure data of
the Pareto-optimal solutions of an aerodynamic transonic airfoil shape
optimization problem showed that the optimized airfoils can be
categorized into two families (low drag designs and high lift designs),
where the lift is increased by changing the camber near the trailing
edge among the low drag designs while the lift is increased by moving
the lower surface upward among the high lift designs.
[42] Akira Oyama, Taku Nonomura, and Kozo Fujii, "Data
Mining
of Non-Dominated Solutions Using Proper Orthogonal Decomposition,"
Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, pp. 1935-1936, Association for Computing Machinery, New
York, NY, USA, 2009.
A new approach to extract useful design information from
non-dominated
solutions of real-world multiobjective optimization problems is
proposed. The proposed approach enables an analysis of line, face, or
volume data that Pareto-optimal solutions have such as flow field and
stress distribution by decomposing the data into principal modes using
proper orthogonal decomposition. Analysis of the shape and surface
pressure data of the non-dominated solutions of an aerodynamic
transonic airfoil shape optimization problem shows capability of the
proposed approach for design knowledge extraction for real-world design
optimization problems.
[43]Takashi
Kubota, Naoko Ogawa, Tatsuaki Okada, Hideaki Miyamoto, Mutsuko Yano
Morimoto, Kazuhisa Fujita, Tetsuya Yamada, Takahide Mizuno, Yasuhiro
Kawakatsu, Akira Oyama, Takehiko Satoh, Jun'ichiro Kawaguchi,
"Preliminary Study on Lander System and Scientific Investigation for
Next Mars Exploration," ISTS2009-K-21, 27th International Symposium on
Space Technology and Science (ISTS 2009), Tsukuba, Japan, July 5-12,
2009.
This paper presents Japanese Mars exploration plan. Firstly the
outline
of Mars exploration plan, scientific objectives and technological
challenges.This paper presents Mars robotics exploration by landers in
detail. This paper describes the system design of landers and science
investigation. This paper also presents the technical challenges,
especially accurate navigation and guidance, reliable landing scheme
with obstacle avoidance, surface exploration technology.
[44] Akira
Oyama, Paul C. Verburg, Taku Nonomura, Harry W. M. Hoeijmakers, and
Kozo Fujii, "Flow Field Data Mining of Pareto-Optimal Airfoils Using
Proper Orthogonal Decomposition," AIAA-2010-1140, 48th AIAA Aerospace
Sciences Meeting, Orlando, Florida, January 4-7, 2010.
Capability of proper-orthogonal-decomposition-based data mining
approach for analysis of flow field data of the Pareto-optimal
solutions is demonstrated. This method enables a designer to extract
design knowledge by examining baseline data and a limited number of
eigenvectors and orthogonal base vectors. The flow data analyzed here
are pressure field data of the Pareto-optimal solutions of an
aerodynamic transonic airfoil shape optimization problem. The present
result shows that the proper-orthogonal-decomposition-based data mining
approach is a useful approach for extracting design knowledge from flow
field data of the Pareto-optimal solutions.
[45] Weipeng Li,
Taku Nonomura, Akira
Oyama, and Kozo Fujii, "LES Study of Feedback-loop Mechanism of
Supersonic Open Cavity Flows," AIAA-2010-5112, 40th Fluid Dynamics
Conference and Exhibit, Chicago, Illinois, June 28-1, 2010.
Supersonic flow over a three-dimensional rectangular cavity with
length-to-depth ratio of 2 is numerically studied by implicit
large-eddy simulation to clarify the feedback-loop mechanism. A
feedback-loop cycle is described and visualized with phase-averaged
analysis of simulation results. Causality between the feedback acoustic
wave and leading-edge shedding vortex is clearly demonstrated. Mach
wave reflection at trailing edge is turned out to be the generation
mechanism of feedback acoustic wave. It is convinced by investigating
time-series instantaneous flowfields and auto-correlation coefficients
of three simulation cases with different convective Mach number.
Components of compression waves in supersonic cavity flows are
summarized and their features are discussed. Proper orthogonal
Decomposition (POD) in frequency domain is firstly employed to analyze
wave propagations inside cavity. Results statistically show the
propagation traces of notable compression waves inside cavity which are
affected by high-speed recirculation flows.
[46] Yoshinori Namera,
Ryoji Takaki,
Akira Oyama, Kozo Fujii, and Makoto Yamamoto, "Aerodynamic Shape Design
of the Vertical Landing Rocket Vehicle," AIAA-2010-4367, 28th AIAA
Applied Aerodynamics Conference, Chicago, Illinois, June 28-1, 2010
Aerodynamic characteristics of a vertical landing rocket vehicle are
computationally investigated under subsonic and supersonic flight
conditions as a preliminary study for the concept design using a light
optimization method and a light CFD tool. The results show that the
simulations with a coarse grid can accurately estimate the aerodynamic
characteristics like axial force coefficient and the lift-to-drag
ratio. The results of the light aerodynamic shape optimization indicate
tradeoff information among objective functions, and the correlation
between design variables and objective functions. The preliminary
knowledge for the aerodynamic shape design is obtained.
[47] Yuki Yamazaki,
Akira Oyama, Taku
Nonomura, Kozo Fujii, and Makoto Yamamoto, "Aerodynamic multiobjective
design exploration of flapping wing using a Navier-Stokes solver,"
International Conference on Computational Fluid Dynamics, St.
Petersburg, Russia, July 12-16, 2010.
An aerodynamic design optimization problem of a three-dimensional
flapping wing is explored with the multiobjective design exploration
framework coupled with a Navier-Stokes solver. The results show that
there is a tradeoff among lift maximization, thrust maximization, and
required power minimization. The results also show that strong vortex
is generated in both down stroke and up stroke motions for thrust
maximization while strong vortex is generated only in down stroke
motion for lift maximization. This study also reveals effects of the
design parameters on the design objectives, for example, pitch offset
has positive linear relationship to the lift.
[48] Ryoji Kojima, Taku Nonomura, Akira Oyama, and Kozo
Fujii, "Large
Eddy Simulation of the Flow over a Thin Airfoil at Low Reynolds
Number," International Conference on
Computational Fluid Dynamics, St. Petersburg, Russia, July 12-16, 2010.
The performance of airfoil NAXA0002 at Reynolds number of 2.3x104
is
investigated with large-eddy simulation. The angle of attack is 3, 6,
or 9 degrees. The behavior of a laminar separation bubble which appears
over a thin airfoil and its effects on aerodynamic characteristics are
mainly discussed.
[49]
Koichi Okada, Kozo Fujii, Koji Miyaji, Akira Oyama, Kengo Asada, and
Taku Nonomura, "Computational Study of the Synthetic Jet on Separated
Flow over a Backward-Facing
Step," IMECE2010-38767, ASME International Mechanical Engineering
Congress & Exposition, Vancouver, British Columbia, Canada,
November 12-18, 2010.
[50]
Yukihiro Kosugi, Akira
Oyama, Kozo Fujii, Masahiro
Kanazaki,
"Multidisciplinary and Multi-objective Design Exploration Methodology
for Conceptual Design of a Hybrid Rocket",
,Infotech@Aerospace 2011, St. Louis, Missouri, March 2011.
[51] Seiya Ugajin, Akira Oyama, Taku
Nonomura, Masaya Suzuki, Makoto
Yamamoto, and Kozo Fujii, "Aerodymamic Design Exploration of flapping
motion for development of Mars Aircraft," CFD & Optimization,
Antalya, Turkey, May 23-25, 2011.
[52] Tomoaki Tatsukawa, Taku Nonomura,
Akira Oyama, and Kozo Fujii,
"Aerodynamic Design Exploration for Reusable Launch Vehicle Using
Genetic Algorithm with Navier-Stokes Solver," The 28th International
Symposium on Space Technology and Science, Ginowan, Japan, June 5-12,
2011.
[53] Taro Shimizu, Dan Hori, Keiichi
Kitamura, Yu Daimon, and Akira
Oyama, "Slit Resonator Design and Damping Estimation in Linear and
Non-linear Ranges," AIAA-2001-3261, 41st AIAA Fluid Dynamics Conference
and Exhibit, Honolulu, Hawaii, June 27-30, 2011.
[54] Satoshi Sekimoto, Kengo Asada,
Tatsuya Usami, Shinichiro Ito, Taku
Nonomura, Akira Oyama, and Kozo Fujii, "Experimental Study of Effects
of Frequency for Burst Wave on DBD Plasma Actuator for Separation
Control," AIAA-2011-3989, 41st AIAA Fluid Dynamics Conference and
Exhibit, Honolulu, Hawaii, June 27-30, 2011.
[55] Akira Oyama, "Airplanes for Mars
Exploration," 21st Workshop on
Astrodynamics and Flight Mechanics, Sagamihara, Kanagawa, July 25-26,
2011.
[56] Akira Oyama, "Multiobjective
Design Exploration of Airplane for
Mars Exploration," 21st Workshop on Astrodynamics and Flight Mechanics,
Sagamihara, Kanagawa, July 25-26, 2011.
[57] Taku Nonomura, Satoshi Sekimoto,
Kengo Asada, Akira Oyama, and
Kozo Fujii, "Experimental Study of Blowing Direction Effects of DBD
Plasma Actuator on Separation Control of Flow Around an Airfoil,"
ASME-JSME-KSME Joint Fluids Engineering Conference 2011, AJK2011-15010,
Hamamatsu, Japan, July 24-29, 2011.
[58] Ryoji Kojima, Donghi Lee, Tomoaki
Tatsukawa, Taku Nonomura, Akira
Oyama, and
Kozo Fujii, "Three-Dimensional Wing Design Towards the Future Mars
Airplane,"
ASME-JSME-KSME Joint Fluids Engineering Conference 2011, AJK2011-15013,
Hamamatsu, Japan, July 24-29, 2011.
[59] Ryoji Kojima, Taku Nonomura,
Akira Oyama, and
Kozo Fujii, "Computational Study of Flow Characteristics of Thick and
Thin Airfoil with Implicit Large-eddy Simulation at Low Reynolds
Number,"
ASME-JSME-KSME Joint Fluids Engineering Conference 2011, AJK2011-15026,
Hamamatsu, Japan, July 24-29, 2011.
[60] Akira Oyama, Yasuhiro Kawakatsu,
and Kazuko Hagiwara, "Application
of Multiobjective DEsign Exploration to Solar-C orbit Design," AAS
11-616, the 2011 AAS/AIAA Astrodynamics Specialist Conference,
Girdwood, Alaska,
July 31- August 4, 2011.
[61] Tomoaki Tatsukawa, Taku Nonomura,
Akira Oyama, and Kozo Fujii,
"Aerodynamic Design Exploration for Reusable Launch Vehicle Using
Multi-Objective Genetic Programming," ASME 2011 International Design
Engineering Technical Conferences & Computers and Information in
Engineering Conference, Washington, DC, August 28-31, 2011.
[62] Masayuki Anyoji, Taku Nonomura,
Akira Oyama, Kozo Fujii, Kei Nose,
Daiju Numata, Hiroki Nagai, and Keisuke Asai, "Aerodynamic
Characteristics of Ishii Airfoil at Low Reynolds Numbers," Eighth
International Conference on Flow Dynamics, Sendai, Japan, November
9-11, 2011.
[63] Naoya Kowatari, Akira Oyama,
Hernan Aguirre, and Kiyoshi Tanaka,
"A study on Large Population MOEA Using Adaptive Epsilon-Box Dominance
and Neighborhood Recombination for Many-Objecitve Optimization,
Learning and Intelligent Optimization Conference (LION) 6, Paris
France, January
16-20, 2012.
[64] Akira Oyama, "Problem
Understanding with Data Mining of
Pareto-Optimal Designs in Space Engineering," Dagstuhl Seminar 12041
Learning in Multiobjective Optimization, January 23-27, 2012.
[65] Dan Hori, Taro Shimizu, Keiichi
Kitamura, Kazuto Kuzuu, and Akira
Oyama, “Slit Resonator Damping Estimation and Proposal of a New
Geometry,” 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA
Aeroacoustics Conference), AIAA-2012-2095, 2012.
[66] Tomoaki Tatsukawa, Akira Oyama,
and Kozo Fujii, “Extraction of
Design Information from Pareto-Optimal Solutions Using Genetic
Programming: A First Report,” International Workshop on Future of CFD
and Aerospace Sciences, Kobe, Japan, May 23-25, 2012.
[67] Akira Oyama, Yasuhiro Kawakatsu,
and Kazuko Hagiwara, “Data Mining
of Pareto-Optimal Solutions of a Solar- Observatory Trajectory Design
Problem,” Infotech@Aerospace 2012, AIAA-2012-2442 , Orange County,
California, June 19-21, 2012.
[68] Naoya Kowatari, Akira Oyama,
Hernan Aguirre, and Kiyoshi Tanaka,
“Analysis on Population Size and Neighberhood Recombination on
Many-Objective Optimization,” 12th International Conference on Parallel
Problem Solving from Nature, S7.8, Taormina, Italy, Sep. 1-5, 2012.
[69] Masaki Nakamiya, Satoru Kitani,
Akira Oyama, and Yasuhiro
Kawakatsu, “Preliminary Study of the Trajectory from the Earth to the
Moon with Low Thrust for the Small Scientific Spacecraft, DESTINY,”
63rd International Astronautical Congress, IAC-12.C1.4.4, Naples,
Italy, Oct. 1-5, 2012.
[70] Gaku Sasaki, Tomoaki Tatsukawa,
Taku Nonomura, Koichi Yonemoto,
Akira Oyama, Takaaki Matsumono, and Tomohiro Narumi, “Multi-Objective
Numerical Exploration of Airfoil Design for Mars Aircraft,” 5th
Symposium on Integrating CFD and Experiments in Aerodynamics, Tokyo,
Japan, Oct. 3-5, 2012.
[71] Masaki Nakamiya, Akira Oyama, Mai
Bando, Chikako Hirose, Stefano
Campangnola, Yasuhiro Kawakatsu, “Trajectory Design from the Earth to
the Moon Using the Multi-Objective Optimization for DESTINY Mission,”
23rd International Symposium on Space Flight Dynamics, Pasadena,
California, Oct. 29-Nov. 2, 2012.
[72] Gaku Sasaki, Tomoaki Tatsukawa,
Taku Nonomura, Koichi Yonemoto,
Akira Oyama, and Takaaki Matsumono, “Multi-Objective Optimization of
Airfoil in Low Reynolds Number Using Genetic Algorithm,” 2012
Asia-Pacific International Symposium on Aerospace Technology, Jeju,
Korea, Nov. 13-15, 2012.
[73] Antonio L ópez, Carlos A. Coello
Coello, Akira Oyama, and Kozo
Fujii, “An Alternative Preference Relation to Deal with Many-Objective
Optimization Problems,” 7th International Conference on Evolutionary
Multi-Criterion Optimization, Sheffield, UK, Mar. 19-22, 2013.
[74] Hern án Aguirre, Akira Oyama, and
Kiyoshi Tanaka, “Adaptive
ε-Sampling and ε-Hood for Evolutionary Many-Objective Optimization,”
7th International Conference on Evolutionary Multi-Criterion
Optimization, Sheffield, UK, Mar. 19-22, 2013.
[75] Tomoaki Tatsukawa, Taku Nonomura,
Akira Oyama, and Kozo Fujii, “A
New Multiobjective Genetic Programming for Extraction of Design
Information from Non-Dominated Solutions ,” 7th International
Conference on Evolutionary Multi-Criterion Optimization, Sheffield, UK,
Mar. 19-22, 2013.
[76] Kazuhisa Fujita, Genya Ishigami,
Naoko Ogawa, Akira Oyama,
Kazuhiko Yamada, Takashi Kubota, Hirdy Miyamoto, and Takehiko Satoh,
"Preliminary Design Study of EDL System for Japan's Mars Rover
Mission," 4th INTERNATIONAL ARA DAYS, Arcachon, France, May 27-29,
2013.
[77] Naoya Fujioka, Taku Nonomura,
Akira Oyama, Makoto Yamamoto, and Kozo Fujii, "Computational Analysis
of Aerodynamic Performance of Mars Airplane," 29th International
Symposium on Space Technology and Science, Nagoya, Japan, June 2-9,
2013.
[78] Katsutoshi Kondo, Hikaru Aono,
Taku Nonomura, Masayuki Anyoji, Akira Oyama, Tianshu Liu, Kozo Fujii,
and Makoto Yamamoto,
"Analysis of Owl-like Airfoil Aerodynamics at Low Reynods Number Flow,"
29th International Symposium on Space Technology and Science, Nagoya,
Japan, June 2-9, 2013.
[79] Gaku Sasaki, Kyoshiro Itakura,
Tomoaki Tatsukawa, Taku Nonomura, Koichi Yonemoto, Akira Oyama, and
Takaaki Matsumoto,
"Multi-Objective Optimization of Airfoil for Mars Exploration Aircraft
Using Genetic Algorithm,"
29th Innternational Symposium on Space Technology and Science, Nagoya,
Japan, June 2-9, 2013.
[80] Bikash Ranjan Das, Junya Aono,
Taku Nonomura, Kazuto Kuzuu, Akira Oyama, and Kozo Fujii,
"Aerodynamic Effects of Fin Layout on Reusable Vehicle Testing during
Gliding Phase,"
29th Innternational Symposium on Space Technology and Science, Nagoya,
Japan, June 2-9, 2013.
[81] Kazuhisa Fujita, Genya Ishigami,
Naoko Ogawa, Akira Oyama, Kazuhiko Yamada, Takashi Kubota, Hirdy
Miyamoto, Takehiko Satoh,
"Design Study of Mars EDL Demonstrator for MELOS Mission,"
29th International Symposium on Space Technology and Science, Nagoya,
Japan, June 2-9, 2013.
[82] Naoko Ogawa, Kazunori Ogohara,
Kazuhisa Fujita, Takashi
Kubota, Genya Ishigami, Akira Oyama, Kazuhiko Yamada, Takehiko Satoh,
"Case Study of Trajectory Design for Synergetic Mars Exploration by
Orbiter and Lander,"
29th International Symposium on Space Technology and Science, Nagoya,
Japan, June 2-9, 2013.
[83] Katsutoshi Kondo, Hikaru Aono, Taku Nonomura, Akira Oyama, Kozo
Fujii, Makoto Yamamoto,
"Large-eddy simulation of Owl-like wing under low Reynolds number
conditions," FEDSM2013-16377, ASME Fluid Engineering Division Summer
Meeting 2013, Incline Village, Nevada, July, 2013.
[84] Taufik Sulaiman, Satoshi Sekimoto, Tomoaki Tatsukawa, Taku
Nonomura, Akira Oyama and Kozo Fujii,
"DBD Plasma Actuator Multi-Objective Design Otimization at Reynolds
Number 63000: Baseline case," FEDSM2013-16325, ASME Fluid Engineering
Division Summer Meeting 2013, Incline Village, Nevada, July, 2013.
[85] Naoko Ogawa, et. al.,
"Preliminary Trajectory Design of MELOS1
Considering Landing Site Candidates," Astrodynamics Conference, 2013.
[86] Hiroki Nagai, Akira Oyama, and Mars Airplane WG, "Mission Scenario
of Mars Exploration by Airplane," The 2013 Adsia-Pacific International
Symposium on Aerospace Technology, Nov. 20-22, 2013.
[87] Katsutoshi Kondo, Hikaru. Aono, Taku Nonomura , Akira. Oyama,
Kozo. Fujii and Makoto Yamamoto,
"Computational Study of Reynolds Number Effect on Owl-like Wing
Aerodynamics at Low ,"
1502, 5th Asia Pacific Congress on Compuattional Mechanics and 4th
International Symposium on Computational Mechanics, Singapole,
December, 2013.
[88] T. Tatsukawa,Y. Nagata, T. Nonomura, A. Oyama, K. Fujii, and M.
Yamamoto, "Multiobjective Design Exploration of an Aero-Acoustic Rocket
Launch Site Design Problem with Evolutionary Computation and Large Eddy
Simulations,"
SCITECH 2014, National Harbor, Maryland, 13-17 January, 2014.
[89] Yutaka Nishio, Akira Oyama, Youhei Akimoto, Hernan Aguirre and
Kiyoshi Tanaka, "Many-objective Optimization of Trajectory Design for
DESTINY Mission," Learning and Intelligent Optimization conference,
Gainesville, Florida, USA, Feb 16-21, 2014.
[90] Takeshi Watanabe, Tomoaki Tatsukawa, Antonio Lopez Jaimes, Hikaru
Aono, Taku Nonomura, Akira Oyama, and Kozo Fujii, "Many-Objective
Evolutionary Computation for Optimization of Separated-Flow Control
Using a DBD Plasma Actuator," 2014 IEEE World Congress on Computational
Intelligence, July 6-11, Beijing International Convention Center,
Beijing, China.
[91] Hernan Aguirre, Yuki Yazawa, Akira Oyama and Kiyoshi Tanaka, "Extending AeSeH from Many-objective to Multi-objective Optimization," Proceedings of Tenth International Conference on Simulated Evolution and Learning, Dunedin, New Zealand, 15-18 December, 2014.
[92] Tomoaki Tatsukawa, Takeshi Watanabe, Akira Oyama, and Kozo Fujii, "Multiobjective Design Exploration of a Many-objective Space Trajectory Problem for Low-Thrust Spacecraft Using MOEA with Large Populations," AIAA SCITECH 2015, Kissimmee, Florida, Jan 5-9, 2015.
[93] Takeshi Watanabe, Hikaru Aono, Tomoaki Tatsukawa, Taku Nonomura, Akira Oyama, and Kozo Fujii, "Design Exploration of a DBD Plasma Actuator for Massive Separation Control," AIAA SCITECH 2015, Kissimmee, Florida, Jan 5-9, 2015.
[94] Mari Nishiyama,, Hisashi Otake, Takeshi Hoshino, Tatsuaki Hashimoto, Takeshi Watanabe, Tomoaki Tatsukawa, Akira Oyama, "Selection of Landing Sites for Future lunar Missions with Multi-Objective Optimization," 46th Lunar and Planetary Science Conference, The Woodlands, Texas, March 16-20, 2015.
[1]
大山聖、大林茂、中橋和博、「マルチグリッド法とLU陰解法」、数値流体力学シンポジウム、1995年12月
[2] 大山聖、大林茂、中橋和博、中村孝、「三次元翼の空力最適化」、第14回航空機計算空気力学シンポジウム、1996年6月
[3]
大山聖、大林茂、中橋和博、中村孝、「三次元遷音速翼の空力最適化」、第15回航空機計算空気力学シンポジウム、1997年6月
[4]
大山聖、大林茂、中橋和博、廣瀬直喜、「実験計画法によるコード化を用いた遺伝的アルゴリズムの空力最適化への適用」、日本航空宇宙学会第29期年会講演
会、1998年4月
[5] 大山聖、竹口幸宏、大林茂、中橋和博、「オイラーコードを用いた超音速翼設計」、第11回計算力学講演会,仙台,
1998年10月
[6] 大山聖、大林茂、中橋和博、廣瀬直樹、「実験計画法に基づく翼形状
のコード化」、第
48回理論応用力学講演会、東京、1999年1月
[7] 大山聖、大林茂、中橋和博、廣瀬直樹、「翼の空力設計への進化ア
ルゴリズムの適
用」、第4回計算工学講演会、東京、1999年5月
[8] 大山聖,大林茂,「実数型多目的進化的計算法」第12回計算力
学講演会,松
山,1999年11月.
[9] 蓮池尚彦, 大山聖, 中橋和博,
大林茂,「2次元翼型失速限界のCFD予測」第18回航空機計算空気力学シンポジウム、東京、2000年6月
[10]
大林茂、佐々木大輔、大山聖、「進化的計算法によるトレードオフの発見について」第5回計算数理工学フォーラム、東京、2003年10月
[11] 大山聖,Meng-Sing
Liou,大林茂,「航空機エンジン圧縮機動翼の空力設計最適化」第17回数値流体力学シンポジウム論文集,2003年12月17-19.
[12] 大山聖,藤井孝藏,「低レイノルズ数翼型の設計最適化」日
本流体力学会
年会,名古屋,日本流体力学会年会論文集,pp. 660-661,F337,2004年8月9-11.
[13] 伊
藤匡人, 大内弘文, 藤井孝藏, 大山聖, 佐藤清, 入門朋子,
林光一,ルテニウム錯体系感圧塗料を用いた宇宙往還機模型の力計測,平成16年度宇宙航行の力学シンポジウム,相模原,平成16年度宇宙航行の力学シンポ
ジウム講演論文集,pp. 124-127,2004.
[14] 大山聖,
下山幸治,藤井孝藏,「パレー
ト概念に基づいた新しい制約条件取り扱い法の開発とTSTO概念設計への適用」,平成16年度「サイレント超音速飛行実現のための実験・計算融合研究」
「レーザー駆動管内加速装置:基礎物理の解明と実用展開」合同シンポジウム, 2005年1月21〜22日.
[15] 大
山
聖,藤松信義,伊藤匡人,藤井孝藏,「感圧・感温塗料圧力計測系のための取得画像後処理ソフトウェアの開発」,第33回可視化情報シンポジウム講演論文
集,pp. 313-316,可視化情報シンポジウム2005年7月.
[16] 伊
藤匡
人,大山聖,藤井孝藏,林光一「感圧・感温塗料を用いた斜め平板衝突噴流の解析」,第33回可視化情報シンポジウム,可視化情報シンポジウム講演論文集,
pp. 317-320,2005年7月.
[17] 下山幸治, 大山 聖, 藤井孝藏,高効率かつ利便性に優れたロバスト最適化手法の開発 -
多目的シックスシグマ手法,第15回設計工学・システム部門講演会, 札幌市,北海道大学,1515, 第15回設計工学・システム部門講演会論文集,
pp237-240,2005.
[18] 大山聖,藤井孝藏,「火星探
査飛行機翼型の空力設計最適
化」,第83期日本機械学会流体工学部門講演会,第83期日本機械学会流体工学部門講演会論文集,G405,金沢市,2005年10月.
[19] 伊藤匡人,
大山聖, 藤井孝藏,有機ELを用いた感圧塗料圧力計測系による平板衝突噴流の解析,第83期日本機械学会流体工学部門講演会,
日本機械学会流体工学部門講演会講演集, pp. 153-154, GS-C9024, 10月,2005.
[20] 下山幸治,
大山聖,藤井孝藏,飛行Mach数変動に対する性能のロバスト性に着目した火星航空機2次元翼の空力最適化,平成17年度宇宙航行の力学シンポジウム,相
模原市,平成17年度宇宙航行の力学シンポジウム論文集,pp. 53-56,2005.
[21] 網谷修男, 伊藤匡人, 山下加奈, 藤井孝藏, 大山聖, 佐藤清, 入門朋子,
飯田明由,低速流におけるデルタ翼周りの流れ場解析,平成17年度宇宙航行の力学シンポジウム,12月,2005.
[22] 下山幸治,
大山聖,
藤井孝藏,飛行Mach数変動に対する性能のロバスト性に着目した火星航空機2次元翼の空力最適化,平成17年度宇宙航行の力学シンポジウム,12月,
2005.
[23] 藤井孝藏, 大山聖, 高木亮治,
田中義輝,火星飛行機探査実現に向けた空力課題と解決への提案ーその1,平成17年度科研費空力班シンポジウム「デトネーション利用推進機関システムの構
築」,pp. 35-39, 1月,2006.
[24] 下山幸
治, 大山聖, 藤井孝藏,気流変動を考慮した火星探査航空機翼型のロバスト空力設計,第38回流体力学講演会,
第38回流体力学講演会講演集,1A17,pp. 63-66,室蘭市,室蘭工業大学,9月28日-29日,2006.
[25] 伊
藤匡人, マキロイ寛済, 大山聖, 藤井孝藏,
林光一,感圧・感温塗料を用いた斜め平板衝突噴流の解析,第84期日本機械学会流体工学部門講演会,流体工学部門講演会講演概要集,910,川越市,東洋
大学川越キャンパス,10月28日-29日,2006.
[26] 下山
幸治,大山
聖,藤井孝藏,多目的シックスシグマ手法の開発と火星航空機翼型ロバスト空力設計への適用,第19回計算力学講演会,第19回計算力学講演会講演論文集,
pp. 189-190,名古屋市,11月3日-5日, 2006.
[27] 網谷修
男, 伊藤匡人, 今井源太, 藤井孝藏, 大山聖,
飯田明由,デルタ翼流れにおける一様流マッハ数効果に関する実験的研究,平成18年度宇宙航行の力学シンポジウム,相模原市,12月14-15,
2006.
[28] 桐迫啓誠,
藤井孝藏,大山聖,野中聡,山本誠,補助翼が付いた再使用観測ロケットのCN,CMp特性
に関する研究,平成18年度宇宙航行の力学シンポジウム,相模原市,12月14-15, 2006.
[29] 大
山聖,谷直樹,山西伸宏,藤井孝藏,宇宙工学分野における多目的最適化,第45回飛行機シンポジウム,北九州,北九州国際会議場,10月10日-10月
12日,2007.
[30] 大
山聖,飯塚宣行,藤本圭一郎,角有司,藤井孝藏,南里秀明,沖田耕一,JAXA基幹ロケットバルブの信頼性向上へ向けた開発の情報化,第17回設計工学・
システム部門講演会,仙台市,10月31日-11月2日,2007.
[31] 藤
本圭一郎,飯塚宣行,大山聖,角有司,藤井孝藏,南里秀明,沖田耕一,詳細FMEAデータをもとにしたインターフェース情報の可視化,第17回設計工学・
システム部門講演会,仙台市,10月31日-11月2日,2007.
[32] 田
中元史,林和夫,松田寿,大友文雄,野田悦夫,新関良樹,安井祐之,志村尚彦,藤井孝蔵,大山聖
,二宮由光,非平衡プラズマによる気流制御(第1報)−プラズマ誘起噴流による翼面剥離抑制効果−,第85期日本機械学会流体工学部門講演会,広島大学,
11月17日-18日,2007.
[33] 大
山聖,網谷修男,堤誠司,飯田明吉,藤井孝藏,デルタ翼流れにおけるー様流マッハ数効果に関する実験的研究・第ニ報,平成19年度宇宙航行の力学シンポジ
ウム,相模原市12月17日-18日,2007.
[34] 小川烈,藤井孝藏,大山聖,高速、高迎角におけるデルタ翼のマッハ数効果,第21回数値流体力学シン
ポジウム,秋葉原,秋葉原コンベンションホール,12月19日-21日,2007.
[35] 谷
直樹,大山聖,山西伸宏,遺伝的アルゴリズムと格子モーフィングを使用したロケットエンジン用タービン翼形状最適化,第21回数値流体力学シンポジウム,
秋葉原,秋葉原コンベンションホール,12月19日-21日,2007.
[36] 大山聖,藤井孝藏,高迎角デルタ翼流れにおける一様流マッハ数効果,平成19年度科研費空力班シンポ
ジューム,伊豆の国市,伊豆長岡KKR千歳荘,1月25日-26日,2008.
[37] 立
川智章,大山聖,藤井孝藏,多目的空力最適化におけるデータマイニング手法の研究,第13回計算工
学講演会,仙台市,仙台市民会館,計算工学講演会論文集,5月19日-21日,2008.
[38] 石
川義泰,大山聖,藤井孝藏,パレート最適翼型からの重要パラメータの抽出法,日本流体力学会年会2008,神戸市,9月4日-7日,2008.
[39] Paul
C. Verburg, Yoshiyuki Ishikawa, Akira Oyama, Kozo Fujii, "A Proposal of
Airfoil Parameters Providing Good Correlation with Aerodynamic
Performance," 第22回数値流体力学シンポジウム,東京都渋谷区,12月17日−19日,2008.
[40] 大
山聖,野々村拓,藤井孝藏,多目的空力形状最適化問題のパレート最適解の固有直交分解を用いた分析法の提案,進化計算シンポジウム2008,北海道登別
市,12月20日-21日,2008.
[41]
藤井
孝藏,大山聖,Paul C. Verburg,石川義泰,設計探査・データ探査利用の試み - 2次元遷音速翼型を例として,平成
20年度航空宇宙空力班シンポジウム,佐賀県嬉野市,1月22-23日,2009.
[42]
大山聖,野々村拓,藤井孝藏,固有直交分解を用いたパレート最適遷音速翼型のデータマイニング,日本航空宇宙学会北部支部2009年講演会/第10回再使
用型宇宙推進系シンポジウム,宮城県仙台市,3月11-12日,2009.
[43]大山聖,Paul C.
Verburg,野々村拓,藤井孝藏,固有直交分解を用いたパレート最適翼型の流れ場マイニング,第14回計算工学講演会,東京都目黒区,5月12-14
日,2009.
[44]
谷直樹,吉田義樹,大山聖,内海政春,山西伸宏,遺伝的アルゴリズムを用いたインペラチップクリアランスの影響評価,ターボ機械協会第61回総会講演会,
pp.63-68, 5月15日,2009.
[45] 大山聖,藤井孝藏,火星飛行機主翼の空力設計,1G07,第
53回宇
宙科学
技術連合講演会講演集[CD-ROM], 9月9-11,京都府京都市,2009.
[46]滑慶則,高木亮治,大山聖,山本誠,藤井孝藏,再使用観測ロケットの空力形状最適化に関する研究,第19回設計工学・システム部門講
演会,10月
28-30日,沖縄県読谷村,2009.
[47]大山聖,藤井孝藏,小型火星飛行機主翼の空力設計初期検討,宇宙航行の力学シンポジウム,12月10,11日,神奈川県相模原市,
2009.
[48]
小嶋亮次,野々村拓,大山聖,藤井孝藏,低レイノルズ数における3次元矩形薄翼の空力特性に関する研究,平成21年度宇宙航行の力学シンポジウム,
2009.
[49]
山崎佑希,野々村拓,大山聖,藤井孝藏,山本誠,翼周り渦挙動が羽ばたき翼性能に与える効果,第23回数値流体力学シンポジウム,2009.
[50]
滑慶則,高木亮治,大山聖,藤井孝藏,山本誠,再使用観測ロケット打ち上げおよび帰還時の空力特性評価,第23回数値流体力学シンポジウム,2009.
[51] 大山聖,他6名,飛行機を用いた火星探査,第10回宇宙科学シンポジウム,2010.
[52]
久保田孝,尾川順子,藤田和央,山田哲哉,大山聖,他,火星着陸探査の工学的技術チャレンジ,第10回宇宙科学シンポジウム,神奈川県相模原市,1月
7〜8日,2010.
[53]
野々村拓,小嶋亮次,福本浩章,大山聖,藤井孝蔵,低レイノルズ数における矩形翼とデルタ翼の空力特性比較,第42回流体力学講演会/航空宇宙数値シミュ
レーション技術シンポジウム2010,1E11,鳥取県米子市,6月24〜25日,2010.
[54] Akira Oyama, Yasuhiro
Kawakatsu, Kazuko Hagiwara,
"Application
of Multiobjective Design Exploration to Solar-C Orbit Design," The 20th
JAXA Workshop on Astrodynamics and Flightmechanics, Kanagawa,
Sagamihara, July 26-27, 2010.
[55] 宇佐美達也,伊藤慎一郎,大山 聖,藤井孝藏,DBD
プラズマアクチュエータにおける駆動周波数が翼剥離制御に与える影響,S0502-3-6
,日本機械学会2010年度年次大会,愛知県名古屋市,9月5〜8日,2010.
[56] Weipeng Li Taku Nonomura, Akira Oyama, and Kozo Fujii, "LES
Study
of Feedback-loop Mechanism in Supersonic Open Cavity Flows,"
日本流体力学会年会2010,北海道札幌市,9月,2010.
[57]
大元雅英,吉川大弘,古橋武,大山聖,堤誠司,通信量を考慮したマルチプロセッサスケジューリング問題へのGAの適用方法に関する検討〜単一目的問題にお
ける多様解の獲得に関する検討〜,第26回ファジィシステムシンポジウム,広島県広島市,9月,2010.
[58]
永井大樹,藤田昂志,浅井圭介,大山聖,竹内伸介,豊田裕之,小川博之,戸田和朗,岡田達明,藤井孝藏,米本浩一,砂田茂,得竹浩,小池勝,元田敏和,藤
田和央,火星探査航空機ワーキンググループ,火星探査航空機による高々度実証試験,平成22年度大気球シンポジウム,神奈川県相模原市,9月30日〜10
月1日,2010.
[59]
大山聖,MELOS1にむけた火星飛行機の概念検討,3F01,第54回宇宙
科学技術連合講演会,静岡県静岡市,11月17〜19日,2010.
[60] 小嶋亮次, 野々村拓, 大山聖,
藤井孝藏,低レイノルズ数における三次元矩形翼のアスペクト比とレイノルズ数の影響,3F07,第54回宇宙科学技術連合講演会,静岡県静岡市,11月
17〜19日,2010.
[61] 小嶋亮次, 李東輝, 野々村拓, 大山聖,
藤井孝藏,低レイノルズ数における空力性能評価手法に関する研究,3F08,第54回宇宙科学技術連合講演会,静岡県静岡市,11月17〜19日,
2010.
[62]
大山聖,MELOS1ミッションに向けた小型火星飛行機の空力設計初期検討,平成22年度宇宙航行の力学シンポジウム,神奈川県相模原市,12月16-
17日,2010.
[63] 小嶋亮次, 野々村拓, 大山聖,
藤井孝藏,低レイノルズ数における3次元矩形薄翼の空力特性に関する研究,平成22年度宇宙航行の力学シンポジウム,神奈川県相模原市,
12月16-17日,2010.
[64] 李東輝,小嶋亮次,野々村拓,大山聖,藤井孝藏,低レイノルズ数における薄翼の空力性能評価手法に関する研究,平成
22年度宇宙
航行の力学シンポジウム,神奈川県相模原市,12月16-17日,2010.
[65] 大山聖,川勝康弘,萩原和子,次期太陽観測衛星軌道
の多目的設計
探査の試み,進化計算シンポジウム2010,福岡県福岡市,12月,2010.
[66]
小杉幸寛,北川洋介,大山聖,藤井孝藏,金崎雅博,進化計算を用いた航空宇宙分野における多分野融合設計探査,進化計算シンポジウム2010,福岡県福岡
市,12月,2010.
[67]
小嶋亮次,野々村拓,大山聖,藤井孝藏,低レイノルズ数における厚翼と薄翼周り流れのiLES解析による特性比較,第24回数値流体力学シンポジウム,
B7-3,神奈川県横浜市,12月,2010.
[68]
大山聖,永井大樹,竹内伸介,豊田裕之,砂田茂,得竹浩,小川博之,戸田和朗,小池勝,元田敏和,藤田和央,安部隆士,藤井孝藏,浅井圭介,火星探査航空
機WG,火星探査航空機の検討,第11回宇宙科学シンポジウム,神奈川県相模原市,1月,2011.
[69]
大山聖,藤井孝藏,立川智章,遺伝的プログラミングと空気力学と空力設計,平
成22年度航空宇宙空力班シンポジウム,L1,栃木県宇都宮市,1月,
2011.
[70]
藤井孝藏,小嶋亮次,野々村拓,大山聖,低レイノルズ数における翼型の空力特性に関して,平成22年度航空宇宙空力班シンポジウム,L3,栃木県宇都宮
市,1月,2011.
[71]
大山聖,川勝康弘,萩原和子,電気推進を用いたSOLAR-C軌道計画問題の多目
的設計探査,平成22年度宇宙輸送シンポジウム,STEP-2010-
22,神奈川県相模原市,1月,2011.
[72]
古渡直哉,大山聖,エルナン・アギレ,田中清,大規模個体集団を用いた進化計算の試み,2011年電子情報通信学会総合大会,ISS-P-340,東京都
世田谷区,3月,2011.
[73] 古渡直哉,大山聖,エルナンアギレ,田中清,適応ε-
Box支配と近傍交叉を用いた大集団MOEAの基礎検討,第1回進化計算学会研究会/第7回進化計算フロンティア研究会合同研究会,東京都,文京区,9
月,2011.
[74] 伊藤慎一郎,宇佐美達也,大山聖,藤井孝蔵,DBD プラズマアクチュエータにおいてバースト周波数がもたらす剥離制御の実験的解析,日
本機械学会2011年度年次大会「先端技術フォーラム」,目黒区,東京都,9月,2011.
[75] 大山聖,他,火星探査飛行機の高高度飛行試
験計画,大気球シンポジウム,相模原市,神奈川県,10月,2011.
[76] 大山聖,他,火星探査航空機のミッション・設計検討,第49回飛行機シンポジウム,3F1,石川県,金沢市,10月,2011.
[77] 古渡直哉,大山聖,エルナンアギレ,田中清,適応ε-Box支配を用いた大集団MOEAにおける近傍交叉の効果,平成23年度電子情報通信
学会信越支部大会,新潟県,柏崎市,10月,2011.
[78] 古渡直哉,大山聖,エルナンアギレ,田中清,MOEAにおける
集団サイズ増加の効果,平成23年度電子情報通信学会信越支部大会,新潟
県,柏崎市,10月,2011.
[79] 古渡直哉,大山聖,エルナンアギレ,田中清,大集団MOEAにおける適応ε-Box支配の効果,平成23年度電子情報通信学会信越支部大
会,新潟県,柏崎市,10月,2011.
[80]
大山聖,米本浩一,竹内伸介,得竹浩,永井大樹,砂田茂,大槻真嗣,火星探査飛行機の多目的設計探査,第55回宇宙科学技術連合講演会,愛媛県,松山市,
11月,2011.
[81] 安養寺正之,野々村拓,大山聖,藤井孝藏,野瀬慶,沼田
大樹,永井大樹,浅井圭介,低レイノルズ数領域における石井翼の空力特性評価,第55回宇宙科学技術連合講演会,愛媛県,松山市,11月,2011.
[82]
立川智章,野々村拓,大山聖,藤井孝藏,再使用観測ロケットの多目的空力設計探査,第55回宇宙科学技術連合講演
会,愛媛県,松山市,11月,2011.
[83]
大山聖,川勝康弘,萩原和子,太陽極域観測衛星軌道設計の多目的設計探査,進化計算シンポジウム2011,宮城県,岩沼市,12月,2011.
[84]
古渡直哉,大山聖,エルナンアギレ,田中清,多数目的最適化における集団サイズと交叉の降下に関する検討,進化計
算シンポジウム2011,宮城県,岩沼市,12月,2011.
[85]
立川智章,野々村拓,大山聖,藤井孝藏,パレート最適解からの設計知見抽出のための多目的遺伝的プログラミングの提案と再使用観測ロケット空力設計問題で
の実証,進化計算シンポジウム2011,宮城県,岩沼市,12月,2011.
[86]宇賀神,青野光,野々村拓,大山聖,藤井孝藏,山本誠,平均揚力最大時の羽
ばたき翼の三次元効
果の解析,第25回数値流体力学シンポジウム,大阪府,吹田市,12月,2011.
[87]
青野光,野々村拓,安養寺正之,大山聖,藤井孝藏,低レイノルズ数流れにおける固
定翼翼断面形状の空力性能への影響,第25回数値流体力学シンポジウム,大阪府,吹
田市,12月,2011.
[88]
大山聖,米本浩一,竹内伸介,得竹浩,永井大樹,砂田茂,大槻真嗣,MELOS1に
向けた火星探査飛行機の多目的設計探査,平成23年度宇宙航行の力学シンポジウム,12月,2011.
[89]
安養寺正之,野々村拓,大山聖,藤井孝藏,野中聡,火星探査飛行機の空力性能評価に向けた惑星環境風洞の動作特性,平
成23年度宇宙航行の力学シンポジウム,12月,2011.
[90]
立川智章,野々村拓,大山聖,藤井孝藏,再使用観測ロケット計上の多目的空力設計探査,平成23年度宇
宙航行の力学シンポジウム,12月,2011.
[91]
掘暖,清水太郎,北村圭一,大山聖,進化計算によるレゾネータ設計の最適化と大振幅時の減衰特性の検討,第49回燃焼シンポジウム,神奈川県,横浜市,
12月,2011.
[92]
大山聖,他,火星表面探査用航空機の研究開発,第12回宇宙科学シンポジウム,神奈川県,相模原市,1月,
2012.
[93]
藤田和央,宮本英昭,岡田達明,石上玄也,尾川順子,大山聖,佐藤毅彦,久保田孝,MELOS1 EDLシステ
ム概要,第12回宇宙科学シンポジウム,神奈川県,相模原市,1月,2012.
[94]
尾川順子,石井信明,津田雄一,川勝康弘,川口淳一郎,松本道弘,藤田和央,大山聖,石上玄也,久保田孝,佐
藤毅彦,MELOS1軌道とミッション・オペレーション,第12回宇宙科学シンポジウム,神奈川県,相模原市,1月,2012.
[95] 森澤征一郎, 野々村拓, 大山聖, 藤井孝藏,
大林茂,データマイニングによる斜め平板に衝突する超音速ジェットから発生する音響波の理解,第44回流体力学講演会/航空宇宙数値シミュレーション技術
シンポジウム,富山県富山市,7月5日6日,2012,
[96] 西尾豊,大山聖,
エルナンアギレ,田中清,適応ε-Box支配を用いたMOEAにおける近傍交叉の一検討,平成24年度電子情報通信学会信越支部大会,新潟県新潟市,
10月13日,2012.
[97]
大山聖,永井大樹,得竹浩,竹内伸介,豊田裕之,藤田昂志,安養寺正之,元田敏和,米本浩一,浅井圭介,藤井孝藏,火星探査航空機ワーキンググループ,火
星探査飛行機の高高度飛行試験計画(その2),平成24年度大気球シンポジウム,神奈川県相模原市,10月16日17日,2012.
[98]
大山聖,永井大樹,得竹浩,竹内伸介,豊田裕之,藤田昂志,安養寺正之,元田敏和,米本浩一,MELOS1にむけた火星飛行機の高高度飛行試験計画,第
56回宇宙科学技術連合講演会,大分県別府市,11月20日〜22日,2012.
[99] 近藤勝俊,青野光,野々村拓, 安養寺正之, 大山聖, Liu
Tianshu,藤井孝藏,
山本誠,火星航空機に向けた低Re数における数値シミュレーションによるOwl翼の空力特性,第56回宇宙科学技術連合講演会,大分県別府市,11月20
日〜22日,2012.
[100] 佐々木岳, 立川智章, 野々村拓, 大山聖,
米本浩一,松本剛明,遺伝的アルゴリズムによる低レイノルズ数高揚抗比翼型の設計探査,第56回宇宙科学技術連合講演会,大分県別府市,11月20日
〜22日,2012.
[101]
安養寺正之,永井大樹,大山聖,藤井孝藏,火星飛行機の全機特性,第56回宇宙科学技術連合講演会,大分県別府市,11月20日〜22日,2012.
[102]
元田敏和,大山聖,永井大樹,得竹浩,火星探査航空機にむけた高高度飛行試験の飛行経路検討,第56回宇宙科学技術連合講演会,大分県別府市,11月20
日〜22日,2012.
[103] 廣瀬史子,中宮賢樹,大山聖,Antonio L
Jaimes,竹内央,川勝康弘,DESTINY
ミッションプロファイル,第56回宇宙科学技術連合講演会,大分県別府市,11月20日〜22日,2012.
[104] 山本高行, 川勝康弘, 大山聖,
萩原和子,イプシロンロケットによる高エネルギ軌道投入,第56回宇宙科学技術連合講演会,大分県別府市,11月20日〜22日,2012.
[105]
大山聖,川口淳一郎,産学官連係-航空宇宙学会が果たすべき役割とその将来像,第56回宇宙科学技術連合講演会,大分県別府市,11月20日〜22日,
2012.
[106]
安養寺正之,永井大樹,大山聖,藤井孝藏,火星飛行機の全機空力特性に関する惑星環境風洞試験,平成24年度宇宙航行の力学シンポジウム,神奈川県相模原
市,12年13日14日,2012.
[107] 近藤勝俊,青野光,野々村拓,安養寺正之,大山聖,Tianshu
Liu,藤井孝藏,山本誠,火星探査航空機に向けた低レイノルズ数におけるフクロウ翼の空力特性,平成24年度宇宙航行の力学シンポジウム,神奈川県相模
原市,12年13日14日,2012.
[108]
大山聖,世界初の火星飛行機の実現を目指して,平成24年度宇宙航行の力学シンポジウム,神奈川県相模原市,12年13日14日,2012.
[109] Antonio López, Akira Oyama, Kozo
Fujii, “Evaluating Two
Evolutionary Approaches to Solve a Many-objective Space Trajectory
Design Problem,” 進化計算シンポジウム2012,長野県軽井沢町,12月15日16日,2012.
[110] Hernán Aguirre, Akira Oyama, and
Kiyoshi Tanaka, “A Study on
Mappings for Evolutionary Many-objective Distribution Search,”
進化計算シンポジウム2012,長野県軽井沢町,12月15日16日,2012.
[111] Hernán Aguirre, Akira Oyama, and
Kiyoshi Tanaka, “A Study on
Neighborhoods for Survival and Mating Selection for Many-objective
Optimization,” 進化計算シンポジウム2012,長野県軽井沢町,12月15日16日,2012.
[112] Taufik Sulaiman, Satoshi
Sekimoto, Tomoaki Tatsukawa, Taku
Nonomura, Akira Oyama, Kozo Fujii, “Multi-Objective Design Exploration
(MODE) for DBD Plasma Actuator based on Wind Tunnel Testing,”
進化計算シンポジウム2012,長野県軽井沢町,12月15日16日,2012.
[113]
飯田大貴,佐々木岳,大山聖,藤井孝藏,米本浩一,翼型形状のクラスタリングによる非劣解の分析方法の提案,進化計算シンポジウム2012,長野県軽井沢
町,12月15日16日,2012.
[114] 近藤勝俊,青野光,野々村拓,安養寺正之,大山聖,Tianshu
Liu,藤井孝藏,山本誠,LESによるフクロウ翼(Re=23000)の空力特性評価,第26回数値流体力学シンポジウム,D07-4,東京都渋谷区,
12月18日-20日, 2012.
[115] 大山聖,藤井孝藏,Taufik
Slaiman,風洞実験に基づく多目的設計探査,平成24年度航空宇宙空力班シンポジウム,京都府亀岡市,1月25日26日,2013.
[116] 安養寺正之, 岡本正人, 日高秀徳, 大山聖,
藤井孝藏,火星探査航空機のスケール機による空力性能評価,日本航空宇宙学会北部支部2013年講演会,宮城県仙台市,3月14日15日,2013.
[117] Hernán Aguirre, Akira Oyama, and
Kiyoshi Tanaka, “A Study on
ε-Mappings and Recombination Rate for Distribution Search in
Evolutionary Many-objective Optimization,”,第4回進化計算学会研究会,神奈川県
横須賀市,3月18日19日,2013.
[118] Naoya Kowatari, Akira Oyama,
Hernán Aguirre, and Kiyoshi Tanaka,
“A Study on Population Size and Neighborhood Recombination in
Evolutionary Many-Objective Continuous Optimization,”,第4回進化計算学会研究会,神奈川県
横須賀市,3月18日19日,2013.
[119]
藤田和央,石上玄也,尾川順子,大山聖,山田和彦,久保田孝,宮本英昭,佐藤毅彦,火星着陸技術実証機と地上探査,日本航空宇宙学会第44期年会講演会,
東京都文京区,4月18日19日,2013.
[120]
日高秀徳,安養寺正之,大山聖,岡本正人,火星飛行機の全機模型低速風洞実験,日本航空宇宙学会第44期年会講演会,東京都文京区,4月18日19日,
2013.
[121]
立川智章,長田裕樹,山本誠,野々村拓,大山聖,藤井孝藏,ロケットの射点設計に向けた空力音響最適化問題の多目的設計探査,W121002,日本機械学
会2013年度年次大会,2013.
[122]
藤田和央,他,火星着陸探査機の概念設計ベースライン,第57回宇宙科学技術連合講演会,JSASS-2013-4303,米子,2013年10月10
日.
[123]
安養寺正之,野々村拓,大山聖,藤井孝藏,永井大樹,低Re数領域の平面形空力特性に対するRe数効果,第57回宇宙科学技術連合講演会,JSASS-
2013-4547米子,2013年10月11日.
[124] 安養寺正之, 野々村拓,大山聖, 藤井孝藏,永井大樹,低レイノルズ数領域の平面形空力特性に対するレイノルズ数効果,
第57回宇宙科学技術連合講演会,米子,2013年10月11日.
[125]
藤岡直也,野々村拓,大山聖,藤井孝藏,山本誠,火星探査航空機の空力性能に対する各部位の寄与,第57回宇宙科学技術連合講演会,米子,2013年10
月11日.
[126] 山本高行,中宮賢樹,坂東麻衣,萩原和子,大山聖,廣瀬史子,Campangnola Stefano,Jaimes
Antonio,Zuianni Federico,川勝
康弘,DESTINY軌道計画,第57回宇宙科学技術連合講演会,米子,2013年10月11日.
[127] 佐藤毅彦,他,火星探査計画MELOS1 の概要,2C05,第57回宇宙科学技術連合講演会,米子,2013年10月.
[128] 宮本英昭,他,MELOS1のめざすサイエンスと着陸候補地点,2C06,第57回宇宙科学技術連合講演会,米子,2013年10月.
[129] 尾川順子,他,MELOS1の軌道設計と着陸候補地点評価,2C08,第57回宇宙科学技術連合講演会,米子,2013年10月.
[130]
立川智章,長田裕樹,山本誠,野々村拓,大山聖,藤井孝藏,ロケット射点形状に関する空力音響多目的設計問題の非劣解データベースの分析,1909,日本
機械学会第26回計算力学講演会,2013.
[131]
立川智章,長田裕樹,山本誠,野々村拓,大山聖,藤井孝藏,進化計算とLESを用いたロケット射点形状の空力音響多目的設計探査,0634,日本機械学会
流体工学部門講演会講演論文集,2013.
[132]
大山聖,永井大樹,得竹浩,竹内伸介,豊田裕之,高橋優,大槻真嗣,元田敏和,岡本正人,安養寺正之,野々村拓,鎌田幸男,藤田昂志,平栗弘貴,佐々木
岳,米本浩一,浅井圭介,藤井孝藏,火星探査航空機ワーキンググループ,"火星探査飛行機の高々度飛行試験計画(その3),"
平成25年度大気球シンポジウム,神奈川,2013年11月.
[133] 近藤勝俊,安養寺正之,岡本正人,野々村拓,大山聖,藤井孝藏,山本誠, “低レイノルズ数における尾翼の舵効き性能評価”,
宇宙航行の力学シンポジウム2013, 宇宙科学研究所,2013年12月
[134] 立川智章,飯田大貴
,野々村拓,大山聖,藤井孝藏,PODを用いたロケット射点形状多目的設計問題の非劣解の分析,進化計算シンポジウム2013,12月5-6日,
2013.
[135] 立川智章, Antonio Lopez Jaimes,
大山聖,
藤井孝藏,実問題を用いた多数目的最適化における進化的アルゴリズムの性能比較 -
衛星軌道設計問題を題材に-,進化計算シンポジウム2013,12月5-6日,2013.
[136] Antonio Lopez, Akira Oyama, and
Kozo Fujii, "A Ranking Method
Based on Two Preference Criteria: Chebyshev Function and e-indicator,"
進化計算シンポジウム2013,12月5-6日,2013.
[137]
西尾豊,大山聖,秋本洋平,アギレエルナン,田中清,衛星軌道設計問題にAeSeHを用いて得られたPOSに関する一考察,進化計算シンポジウム
2013,12月5-6日,2013.
[138]
飯田大貴,大山聖,藤井孝藏,固有直交分解を用いたクラスタリングによる翼型形状最適化結果の詳細分析,進化計算シンポジウム2013,12月5-6日,
2013.
[139]
大山聖,他,火星探査飛行機の高高度飛行試験,P2-136,宇宙科学シンポジウム,2014.
[140]
藤田和央,他,火星着陸探査技術実証機検討の現状報告,P2-133,宇宙科学シンポジウム,2014.
[141] 佐藤峻介,山本高行,川勝康弘,大山聖,萩原和子,イプシロンロケットによるDESTINYの高エネルギ軌道投入,P2-175,宇宙科学シンポジウム,2014.
[142] 大山聖,立川智章,野々村拓,藤井孝藏,ロケット射点火炎偏向板の空力音響多目的設計探査,2L12,平成25年度航空宇宙空力シンポジウム,2014年1月24-25日,北海道登別市,2014.
[143] 福本浩章,浅野兼人,青野光,渡辺毅,田中元史,松田寿,大迫俊樹,野々村拓,大山聖,藤井孝藏,ピッチング翼周りの動的失速流れ制御におけるDBDプラズマアクチュエータ設置位置の影響,第28回数値流体力学シンポジウム,B12-3,東京都江戸川区,2014年12月.
[144 A Parallelized ACO Framework for Many-Objective Optimization, martin Schlueter, Takeshi Watanabe, and Akira Oyama, 進化計算シンポジウム2014, P3-16,広島県廿日市市,2014年12月20-21日.
[145] 解の探索方向を考慮した多数目的進化型アルゴリズムAεSεHの一検討,矢澤佑記, 大山聖, 秋本洋平, アギレエルナン, 田中清,進化計算シンポジウム2014, P4-01,広島県廿日市市,2014年12月20-21日.
[146] ハイパーヴォリュームの並列高速計算,渡辺毅,立川智章,大山聖,進化計算シンポジウム2014, P1-05,広島県廿日市市,2014年12月20-21日.
[147] 多数目的進化計算における集団サイズの超大規模化に関する一検討,立川智章,渡辺毅,大山聖,進化計算シンポジウム2014,P2-10,広島県廿日市市,2014年12月20-21日.
[148] Schlueter Martin, Watanabe Takeshi, Oyama Akira,超並列蟻コロニー最適化法による多数目的最適化日本機械学会第11回最適化シンポジウム(OPTIS2014) ,1112,石川県金沢市,2014年12月12-13日.
[149] 渡辺毅,萩原和子,立川智章,Chit Hong Yam, Federico Zuiani,大山聖,川勝康弘,DESTINY軌道設計の多目的設計探査,日本機械学会第11回最適化シンポジウム(OPTIS2014), 1219,石川県金沢市,2014年12月12-13日.
[150] 佐藤峻介,山本高行,川勝康弘,大山聖,萩原和子,多目的遺伝的アルゴリズムを用いたイプシロンロケットの軌道最適化,日本機械学会第11回最適化シンポジウム(OPTIS2014), 2109,石川県金沢市,2014年12月12-13日.
[151] 大山聖,立川智章,渡辺毅,スーパーコンピュータ「京」を用いた大規模多目的設計探査,日本機械学会第11回最適化シンポジウム(OPTIS2014) ,1218,石川県金沢市,2014年12月12-13日.
[152] 立川智章,渡辺毅,大山聖,超大規模集団サイズを用いた多数目的最適化に向けた進化計算手法の開発,日本機械学会第11回最適化シンポジウム(OPTIS2014) ,1113,石川県金沢市,2014年12月12-13日.
[153] 永井大樹, 安養寺正之 , 野々村拓,近藤勝俊,大山聖,岡本正人,佐々木岳 , 松本剛明 , 米本浩一,金崎雅博,砂田茂,米澤宏一,小池勝,藤田昂志, 浅井圭介,藤井孝藏,火星探査航空機 WG における空力研究のこれまでの 成果と現状,第 58 回 宇宙科学技術連合講演会,長崎県長崎市,1B01,2014年11月.
[154] 豊田 裕之 , 高橋 優 , 嶋田 貴信,鷲尾 英俊,小出 和也 , 大登 裕樹,大山 聖,火星探査を実現する軽量な太陽電池およびバッテリ の開発,第 58 回 宇宙科学技術連合講演会,長崎県長崎市,1B06,2014年11月.
[155] 藤田 昂志 , 永井 大樹,大山 聖,火星着陸探査技術実証機への搭載を目指した火星飛 行機の概念設計,第 58 回 宇宙科学技術連合講演会,長崎県長崎市,1B07,2014年11月.
[156] 佐藤 峻介 , 山本 高行 , 川勝 康弘 , 大山 聖,萩原 和子,イプシロンロケットによる高エネルギ軌道への投入,第 58 回 宇宙科学技術連合講演会,長崎県長崎市,1B20,2014年11月.
[157] 山 本 高 行 , 川 勝 康 弘 , Yam Chit Hong, Campagnola Stefano, 杉本 理英 , 大山 聖 , 立川 智章 , 渡辺 毅 , 廣瀬 史子 , 池永 敏憲,萩原 智子,小倉 聡司,中宮 賢樹,スパイラル軌道上昇と軌道計画,第 58 回 宇宙科学技術連合講演会,長崎県長崎市,1B21,2014年11月.
[158] 小郷原 一智,大山 聖,永井 大樹,得竹 浩,DESTINY 応用:火星気象衛星と火星航空機によるダ スト輸送メカニズムの解明ミッション,第 58 回 宇宙科学技術連合講演会,長崎県長崎市,2B08,2014年11月.
[159] 李 東輝,野々村 拓 , 大山 聖 , 藤井 孝藏,低レイノルズ数領域の翼型空力性能評価のための数 値計算法の比較,第 58 回 宇宙科学技術連合講演会,長崎県長崎市,2H14,2014年11月.
[160] 大山聖,永井大樹,得竹浩,竹内伸介, 豊田裕之, 宮澤優, 大槻真嗣,元田敏和,岡本正人,安養寺正之, 野々村拓, 鎌田幸男,藤田昂志,平栗弘貴,佐々木岳, 米本浩一,浅井圭介,藤井孝藏,火星探査飛行機の高高度飛行試験の進捗報告,平成26年度大気球シンポジウム,神奈川県相模原市,2014年11月6-7日.
[161] 森澤征一郎,野々村拓,大山聖,藤井孝藏,大林茂,低Re数域における翼型の空力特性に及ぼすマッハ数効果,第46回流体力学講演会/第32回航空宇宙数値シミュレーション技術シンポジウム,1D10,青森県弘前市,2014年7月3日-4日.
[162] 安養寺正之、 岡本正人、藤岡直也、野々村拓、永井大樹、大山聖、藤井孝藏、山本誠、火星探査航空機の全機空力特性に関する風洞実験および数値解析,第46回流体力学講演会/第32回航空宇宙数値シミュレーション技術シンポジウム、1D11、青森県弘前市、2014年7月3日-4日.
[163] 安藤善紀、野々村拓、大山聖、藤井孝藏、大林茂、低レイノルズ数における垂直突風に対する翼型の応答解析,第46回流体力学講演会/第32回航空宇宙数値シミュレーション技術シンポジウム、2D02、青森県弘前市、2014年7月3日-4日.
[164] 安藤善紀,野々村拓,大山聖,藤井孝藏,大林茂,突風に強固な火星飛行機の翼の空力設計に向けた垂直突風に対する翼型の応答解析,平成26年度宇宙航行の力学シンポジウム,神奈川県相模原市,2014年12月18-19日.
[165] 藤田和央,石上玄也,畠中龍太,高井元,豊田裕之,尾川順子,春木美鈴,竹内央,野々村拓,山田和彦,高柳大樹,小澤宇志,松山新吾,大山聖,火星着陸技術実証機のシステム構成と技術開発,第15回宇宙科学シンポジウム,P-192(ポスター),神奈川県相模原市,2015年1月6-7日.
[166] 小郷原一智,大山聖,永井大樹,得竹浩,火星気象衛星と火星飛行機による ダスト輸送メカニズム解明ミッション,第15回宇宙科学シンポジウム,P-203(ポスター),神奈川県相模原市,2015年1月6-7日.
[167] 大山聖,川勝康弘,船木一幸,豊田裕之,對木淳夫,児子健一郎,新宇宙探査技術実験ミッションDESTINYのミッション要求とシステム要求,第15回宇宙科学シンポジウム,P-265(ポスター),神奈川県相模原市,2015年1月6-7日.
[168] 岩田隆浩,川勝康弘,村上豪,池永敏憲,江副祐一郎,亀田真吾,桂華邦裕,荒井朋子,松浦周二,佐伯孝尚,今村剛,小郷原一智,大山聖,DESTINYを用いた太陽系探査,第15回宇宙科学シンポジウム,P-266(ポスター),神奈川県相模原市,2015年1月6-7日.
[169] 山本高行,Yam Chit Hong, Campagnola Stefano,杉本理英,大山聖,立川智章,渡辺毅,廣瀬史子,池永敏憲,川勝康弘,萩原和子,小倉聡司, Srali Bruno,中宮賢樹,佐藤峻介,DESTINY機動計画,第15回宇宙科学シンポジウム,P-268(ポスター),神奈川県相模原市,2015年1月6-7日.
[170] 大山聖,火星飛行探査の検討の現状と将来計画,第2回火星科学研究会,兵庫県神戸市,2015年1月16-17日.
[171] 西山万里,大嶽久志,星野健,橋本樹明,渡辺毅,立川智,大山聖,月周回衛星「かぐや」のデータを用いた多目的最適化による月着陸最適候補地の選定,2014年度宇宙科学情報解析シンポジウム,神奈川県相模原市,2015年2月13日.
翻訳
[1]
(原著)Lohner,
R., Baum, J. D., Charman, C.,
and
Pelessone, D. (翻訳)大山聖,「第一原理に基づくCFDCSD連成コードによる構造物への爆風効果の予測」, 計算工学,Vol.9,
No.3,pp.30-37, 2004.
博士論文
Wing Design Using Evolutionary Algorithm
Akira Oyama, March 2000
Abstract
Although
Evolutionary Algorithms
(EAs) have become increasingly popular
in aerodynamic design
problems, the previous applications of EAs are restricted to more or
less simplified problems involving not more than 10-30 design
parameters. In contrast to that, in real-world design problems, a large
number of design parameters must be handled ? for example, a wing shape
for a generic transonic aircraft usually parameterized by more than a
hundred of design parameters. Since such problem has a highly
multidimensional search space and extremely complicated objective
function distribution, standard EAs would fail to find a globally
optimum. This research develops a new, robust, and efficient numerical
design method applicable to such real-world aerodynamic design
problems.
One of the most important difficulties in real-world aerodynamic shape
design problems is their highly multidimensional design space. To
develop a robust and efficient EA applicable to such design problems,
the real-coded ARGAs have been developed by incorporating the
idea of the binary-coded ARGAs with the use of the floating-point
representation. The performance of the proposed EAs was demonstrated by
applying to a typical test function minimization problem and an
aerodynamic airfoil shape optimization problem. The real-coded ARGAs
consistently found better solutions than the conventional real-coded
GAs do.
Because the flow field is governed by a system of nonlinear partial
differential equations, objective function landscape of an aerodynamic
optimization is often multimodal and nonlinear. To improve EAs’
capability of finding a global optimum in such a problem, a crossover
operator based on the structured coding has been proposed. The coding
structure of the design variables is constructed according to the
interaction information among design parameters analyzed by the
experimental design. Aerodynamic optimizations of a transonic wing
demonstrated that the crossover based on the structured coding was more
efficient than the traditional one.
To ensure the capability of the present EA in handling large-scale
aerodynamic design optimizations, the real-coded ARGA coupled with the
crossover based on the structured coding is applied to an aerodynamic
design optimization of a transonic wing shape for generic transport
aircraft. Aerodynamic performances of the design candidates are
evaluated by using the three-dimensional compressive Navier-Stokes
equations to guarantee an accurate model of the flow field. Structural
constraint is introduced to avoid an apparent solution of zero
thickness wing for low drag in high speeds. To overcome enormous
computational time necessary for the optimization, the computation is
parallelized on NWT. The designed wing had a good L/D value satisfying
the given structural constraint on wing thickness.
Finally, an EA is applied to an aerodynamic wing shape design for a
supersonic transport to examine the feasibility of the EA-based
optimization in supersonic wing design optimizations. The optimum
design obtained from the present approach yielded both the minimum
induced
drag and the minimum volume wave drag in the given design space. The
design also indicated the most important features of supersonic wing
design as compared with conventional transonic wing design as follows:
1) Warp geometry based on camber line and twist angle distributions
plays a more important role than spanwise thickness distribution
because the thickness becomes simply as thin as possible. 2) Because
the wing thickness constraint comes from the wing structure, a
practical structural constraint will be
required.
Contents
Table of Contents
contents.ps.gz
Chapter 1: Introduction
Chapter1.ps.gz
Chapter1.pdf
Chapter 2: Real-Coded Adaptive Range Genetic Algorithm
Chapter2.ps.gz Chapter2.pdf
Chapter 3: Evolutionary Algorithms Based on Structured Coding for
Aerodynamic Wing Optimizations
Chapter3.ps.gz Chapter3.pdf
Chapter 4: Transonic Wing Design Optimization Based on Evolutionary
Algorithm
Chapter4.ps.gz
Chapter4.pdf
Chapter 5: Supersonic Wing Design Optimization Based on Evolutionary
Algorithm
Chapter5.ps.gz Chapter5.pdf
Chapter 6: Summary and Further Work
Chapter6.ps.gz
Chapter6.pdf