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ABSTRACT

Real-coded Adaptive Range Genetic Algorithms (ARGAs) have been developed. The real-coded
ARGAs possess both advantages of the binary-coded ARGAs and the use of the floating point
representation to overcome the problems of having a large search space that requires continuous
sampling. First, the efficiency and the robustness of the proposed approach are demonstrated by test
functions. Then the proposed approach is applied to an aerodynamic airfoil shape optimization
problem. The results confirm that the real-coded ARGAs consistently find better solutions than the
conventional real-coded Genetic Algorithms do. The designed airfoil shape is considered to be the
global optimal and thus ensures the feasibility of the real-coded ARGAs in aerodynamic designs.

1. INTRODUCTION

Aerodynamic optimization of a wing using Computational Fluid Dynamics (CFD) is a challenging
problem due to the following three reasons. First, the objective function distributions are extremely
rough as pointed out in [1], originating in nonlinearity of the governing flow equations. Second, the
design space is highly multidimensional. For example, a wing shape is usually parameterized by over
100 design variables since a wing consists of an elaborately curved surface. Third, function
evaluations are very expensive. An aerodynamic evaluation using a Navier-Stokes calculation, for
instance, usually requires 60-90 minutes of CPU time on a vector computer.

Among Optimization Algorithms, Gradient-based Methods (GMs) are well-known optimization
algorithms, which probe the optimum by calculating the local gradient information. Although GMs are
superior to other optimization algorithms in the local search, the optimum obtained from these
methods may not be a global one, especially in the aerodynamic optimization problems.

On the other hand, Genetic Algorithms (GAs) are known to be robust optimization algorithms modeled
on the mechanism of the natural evolution. GAs have capability of finding a global optimum because
they don’t use any derivative information and they search from multiple design points. Therefore, GAs
are a promising approach to aerodynamic optimizations. However, there are limitations in a population
size as well as a number of generations allowed.

Finding a global optimum in the continuous domain is challenging for GAs. In traditional GAs, binary
representation has been used for chromosomes, which evenly discretizes a real design space. Although
such binary-coded GAs have been successfully applied to a wide range of design optimization
problems (for example, see [2],[3]), they suffer from disadvantages, when applied to the real-world
problems involving a large number of real design variables. Since binary substrings representing each
parameter with the desired precision are concatenated to form a chromosome for the GAs, the resulting
chromosome encoding a large number of design variables would result in a huge string length. For
example, for 100 variables with a precision of six digits, the string length is about 2000. GAs would
perform poorly for such design problems. Previous applications have been kept away from this
problem by sacrificing precision or narrowing down the search regions prior to the optimization.



However, such approaches might exclude the region that actually has the global optimum.

Another drawback of the binary-coded GAs applied to parameter optimization problems in continuous
domains comes from discrepancy between the binary representation space and the actual problem
space. For example, two points close to each other in the representation space might be far in the
binary represented problem space. It is still an open question to construct an efficient crossover
operator that suits to such a modified problem space.

A simple solution to these problems is the use of floating point representation of parameters as a
chromosome [4]. In these real-coded GAs, a chromosome is coded as a finite-length string of the real
numbers corresponding to the design variables. The real-coded GAs are robust, accurate, and efficient
because the floating point representation is conceptually closest to the real design space, and
moreover, the string length reduces to the number of design variables. It has been reported that the
real-coded GAs outperformed binary-coded GAs in many design problems [5], [6]. However, even the
real-coded GAs would lead to premature convergence when applied to aerodynamic shape designs
with a large number of design variables.

A more sophisticated approach is to alter dynamically the coarseness of the search space referred to as
dynamic coding. In [7], Krishnakumar et al. presented Stochastic Genetic Algorithms (Stochastic GAs)
to solve efficiently problems with a large number of real design parameters. The key features of
Stochastic GAs are:
1)  Each binary number represents a region of the real space instead of a single point to

maintaining good precision with the small string length.
2)  Those regions adapt during the optimization process according to the 1/5th success rule as

Evolutionary Strategies (ES) to improve efficiency and robustness.
Actually, the Stochastic GAs have been successfully applied to Integrated Flight Propulsion Controller
designs [7] and air combat tactics optimization [8]. As they mentioned, the Stochastic GAs bridge the
gap between ES and GAs to handle large design problems.

Adaptive Range Genetic Algorithms (ARGAs) are a quite new approach using dynamic coding
proposed by Arakawa and Hagiwara [9] for binary-coded GAs to treat continuous design space. The
essence of their idea is to adapt the population toward promising design regions during the
optimization process, which enables efficient and robust search in good precision while keeping the
string length small. Moreover, ARGAs eliminate prior definition of boundaries of the search regions
since ARGAs distribute design candidates according to the normal distributions of the design variables
in the present population. In [10], ARGAs have been applied to pressure vessel designs and
outperformed other optimization algorithms.

The objective of the present work is to develop robust and efficient GAs applicable to aerodynamic
shape designs. To achieve this goal, the idea of the dynamic coding is incorporated with the used of
the floating point representation. Since the ideas of the Stochastic GAs and the use of the floating point
representation are incompatible, ARGAs for floating point representation are developed. The real-
coded ARGAs are expected to possess both advantages of the binary-coded ARGAs and the floating
point representation to overcome the problems of having a large search space that requires continuous
sampling. First, to display advantages of the present approach, the proposed approach will be applied
to two test function optimization problems. Then, an aerodynamic airfoil shape optimization will be
demonstrated to ensure the feasibility of the proposed approach in aerodynamic design problems.

2. ADAPTIVE RANGE GENETIC ALGORITHMS

2.1 ARGAs for binary representation
When conventional binary-coded GAs are applied to real-number optimization problems, discrete



values of real design variables ip  are given by evenly discretizing prior-defined search regions for

each design variable [ min,ip , max,ip ] according to the length of the binary substring lib ,  as
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In binary-coded ARGAs, decoding rules for the offspring are given by the following normal
distributions,
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where the average iµ  and the standard deviation iσ  of each design variable are determined by the
population statistics. Those values are recomputed in every generation. Then, mapping from a binary
string into a real number is given so that the region between UBN′ and LBN′ in Fig.1 is divided into
equal size regions according to the binary bit size as
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where UBN′ and LBN′  are additional system parameters defined in [0,1]. In the ARGAs, genes of
design candidates represent relative locations in the updated range of the design space. Therefore, the
offspring are supposed to represent likely a range of an optimal value of design variables.

Although the original ARGAs have been successfully applied to real parameter optimizations, there is
still room for improvement. The first one is how to select the system parameters UBN′ and LBN′ on
which robustness and efficiency of ARGAs largely depend. The second one is the use of constant
intervals even near the center of the normal distributions. The last one is that since genes represent
relative locations, the offsprings become constantly away from the centers of the normal distributions
when the distributions are updated. Therefore, the actual population statistics does not coincide with
the updated population statistics.

2.2 ARGAs for floating point representation
In real-coded GAs, real values of design variable are directly coded as a real string ir ,

  ii rp = (5)

where max,min, iii prp ≤≤
Or, sometimes normalized values of the design variables are used as
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where 10 ≤≤ ir

To employ floating point representation for ARGAs, the real values of design variables ip  are

rewritten here by the real numbers ir  defined in (0,1) so that integral of the probability distribution of



the normal distribution from ∞−  to ipn  is equal to ir  as
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where the average iµ and the standard deviation iσ of each design variable are calculated by the top
half of the present population. Schematic view of this coding is illustrated in Fig. 2. It should be noted
that the real-coded ARGAs resolve drawbacks of the original ARGAs; no need for selecting UBN′ and

LBN′ as well as arbitrary resolution near the average. To prevent inconsistency between the actual and
updated population statistics, the present ARGAs update µ and σ every M generations and then the
population is reinitialized. Flowchart of the resulting ARGA is shown in Fig. 3.

To improve robustness of the present ARGAs further, relaxation factors µω   and σω  are introduced
to update the average and standard deviation as
  )( presentsamplingpresentnew µµωµµ µ −+= (9)
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where ω  lower than 1 contributes to improve robustness of the ARGAs. samplingµ  and samplingσ  are

determined by sampling the top half of the present population. Here, µω , σω and M are set to 1, 0.5
and 4, respectively. They are determined by a parametric study using a simple test function.

In this study, design variables are coded in a finite-length string of real numbers. Fitness of a design
candidate is determined by its rank among the population based on its objective function value and
then selection is performed by the stochastic universal sampling [11] coupled with the elitist strategy.
Ranking selection is adopted since it maintains sufficient selection pressure throughout the
optimization. One-point crossover is always applied to real-number strings of the selected design
candidates. Mutation takes place at a probability of 0.1, and then a uniform random disturbance is
added to the corresponding gene in the amount up to 0.1.

3. RESULTS
3.1 Multi-Modal function
To demonstrate how the real-coded ARGAs work, they were first applied to minimization of a high
dimensional multi-modal function:
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where ]3,3[−∈ix . Figure 4 shows one-dimensional version of this function. This function has two

local optima near 2±=ix . Here, 150 generations were allowed with a population size of 300. Five
trials were run for each GA changing seeds for random numbers to give different initial populations.
Figure 5 compares the performances of the conventional GA and the ARGA. Figure 6 plotting solx1 ’s
which are obtained as the temporary solutions of all design candidates helps to understand why the
ARGA worked much better than the conventional GA. This figure shows that the ARGA maintained
gene diversity longer than the conventional GA in the initial phase and then adapt to their search space
to the local region near the optimal. While the initial gene diversity contributes to the ARGAs’
robustness, the adaptive feature of the ARGAs improves their local search capability.

3.2 Dynamic control problem
The next problem is a dynamic control problem in [5]. This problem is hard to optimize since it



involves many correlated design parameters like practical design problems. The objective is to
minimize the following function:
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 is the control vector. The search domain is [-200,200] for

each ku . The initial state 0x  and the size of the control vector are given by 100 and 45, respectively.
The population size was set to 50, and the maximum number of generations is set to 500. Figure 7
compares the optimization histories of five trials for both GAs. The bold line indicates the analytically
obtained optimum value. While all the trials using the conventional GA lead to premature
convergence, the ARGA find the global optimum at every trial.

3.3 Aerodynamic airfoil shape optimization
To demonstrate performance of the real-coded ARGAs in comparison with that of the conventional
real-coded GAs, aerodynamic airfoil shape optimizations were carried out. The objective function was
the lift-to-drag ratio to be maximized where the free stream Mach number and the angle of attack were
set to 0.8 and 2 degrees, respectively. The airfoil thickness was constrained so that the maximum
thickness was greater than 12% of the chord length. The aerodynamic performance of each design was
evaluated by the two-dimensional Navier-Stokes solver based on a total variation diminishing type
upwind differencing [12], the lower-upper symmetric Gauss-Seidel scheme [13] and the multigrid
method [14].

As described in [15], aerodynamic performances of the designed airfoils greatly depend on the choice
of the shape parameterization techniques. Therefore, the PARSEC airfoil [16] was used, which can
represent a wide variety of airfoils with a reasonable number of parameters. This technique
parameterizes an airfoil shape using a linear combination of shape functions as
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An airfoil shape is defined by basic geometric parameters that are directly related to the knowledge of
transonic flows around the airfoil, instead of the coefficients of shape functions themselves: leading-
edge radius, upper and lower crest location including curvatures, trailing-edge ordinate, thickness,
direction and wedge angle as illustrated in Fig. 8. Those parameters are related to the coefficients of
the shape functions by solving simple simultaneous equations. Selecting those parameters is
considered to help finding the global optimum design by relaxing the complexity of the objective
function distribution. In this study, nine design variables are used to give an airfoil shape with both
trailing-edge thickness and its ordinate (at X=1) frozen to 0.

Figure 9 compares optimization histories of three trials using the real-coded ARGA and the
conventional real-coded GA. Both of the population size and the number of generations were 100. The
present ARGA outperformed the conventional GA starting from all initial populations.

Figure 10 shows the shape and the corresponding pressure coefficient distribution of the airfoil
designed with the ARGA. The surface pressure distribution is similar to that of NASA supercritical
airfoils, such as an approximately uniform distribution (rooftop) on the upper surface, a weak shock
wave significantly rear of the midchord, a pressure plateau downstream of the shock wave, a relatively
steep pressure recovery on the extreme rearward region, and a trailing edge pressure slightly more
positive than ambient pressure [17]. The design result is considered to be the global optimal and thus
ensures the feasibility of the present ARGA in aerodynamic designs.

4. CONCLUTIONS



To develop robust and efficient GAs applicable to aerodynamic shape designs, the real-coded ARGAs
have been developed by incorporating the idea of the binary-coded ARGAs with the use of the floating
point representation. The resulting real-coded ARGAs are expected to possess both advantages of the
binary-coded ARGAs and the use of the floating point representation to overcome the problems of
having a large search space that requires continuous sampling. First, the efficiency and the robustness
of the proposed approach have been demonstrated by using two test functions. Then the proposed
approach has been applied to an aerodynamic airfoil shape optimization problem. The results confirm
that the real-coded ARGAs consistently find better solutions than the conventional real-coded GAs do.
The design result is considered to be the global optimal and thus ensures the feasibility of the real-
coded ARGAs in aerodynamic designs.
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Figure 5. Fitness history.
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Figure 6. X1 histories of conventional GA(above) and ARGA(bellow).
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