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Abstract’

A Genetic Algorithm (GA) has been applied to optimize a
transonic wing shape for generic transport aircraft. A three-
dimensional compressible Navier-Stokes (N-S) solver is
used to evaluate aerodynamic performance. The N-S
evaluation is parallelized on Numerical Wind Tunnel
(NWT) at National Aerospace Laboratory in Japan, a
parallel vector machine with 166 processing elements.
Designed wings show a tradeoff between an increase of the
airfoil thickness driven by a structural constraint and a
reduction of the wave drag produced by a shock wave. The
present result indicates that GA has found a best feasible
solution in the given design constraints.

1 Introduction

Automated design process is aftractive for commercial
aircraft industry as it greatly reduces a development period
by excluding any human interactions. This is very important
in today’s competitive environment because the commercial
success depends on the cost and timeliness of products as
well as

quality. Toward the automated design of

! Graduate Student, Department of Aeronautics and Space
Engineering.

2 Associate Professor, Department of Aeronautics and Space
Engineering, Senior Member ATAA.

Email: obayashi@ad.mech.tohoku.ac.jp

3 Professor, Department of Aeronautics and Space Engineering,
Associate Fellow ATAA.

* Senior Scientist, Computational Sciences Division.

Copyright © 1997 by the American Institute of Aeronautics and

Astronautics, Inc. All right reserved.

aerodynamic shapes, Computational Fluid Dynamics (CFD)

codes have been coupled with various numerical

optimization methods.

The gradient-based method (GM) is a well-known
optimization algorithm. It probes the optimum by calculating
the local gradient information. This method is superior to
other optimization algorithms in the local search, while the
optimum obtained from this method may not be a global
optimum, unless the distribution of the objective is
differentiable and convex.

However, distributions of objective functions in real-world
applications may be too complex for GM to find an optimum.
It is also very difficult for GM to treat realistic constraints.
Furthermore, computational time for GM becomes larger as
the number of design variables increases, and thus it needs
more computational time. For these reasons, GM is not good
enough for practical optimizations.

Genetic Algorithm (GA) is an emergent optimization
algorithm, which has recently been applied to aerodynamic
design problems [1-3]. GA is modeled on the mechanism of
the natural evolution. The main idea is the evolution of a
population that consists of solution candidates by using
selection, crossover and mutation. GA has the capability of
finding a global optimum because GA does not use any
derivative information unlike GM. In addition, CPU time
required for the optimization will not become large as the
number of design variables increases. Thus, GA is desirable
for practical optimizations.



The numerical aerodynamic optimization requires estimation
of aerodynamic performance using CFD codes. Among
these codes, the Navier-Stokes code is desirable since it
evaluates viscous and compressible effect accurately.
However, the N-S calculation is very time consuming. Thus,
the global optimization coupling GA with the N-S
calculations requires incredibly large CPU time even on the
latest supercomputers. Previous investigations have
therefore been limited to the two-dimensional problems,

unless the flow physics was greatly simplified.

In [4], a subsonic wing optimization by GA with three-

dimensional N-S calculations was first performed

successfully by combining the following features:
Multigrid method,
simplified airfoil definition, and parallel computation on
Numerical Wind Tunnel (NWT, used by winners of IEEE’s
1995 and 1996 Gordon Bell Prize for performance). A

structural constraint was also applied to obtain a realistic

convergence acceleration by the

thickness distribution that sustains the bending moment due
to the lift generated by the designed wing itself [5]. The
resultant design was consistent with the design principles
obtained from existing theories and experiments.

In this paper, aerodynamic shape optimizations of a
transonic wing with and without the structural constraint are
performed by using the simplified airfoil definition as well
as the extended Joukowski transformation. For the
simplified cases, NACA five-digit airfoil definition is used
and only thickness and twist angle distributions are designed.
For the extended Joukowski case, the airfoil shape is also
optimized by five parameters that define the two consecutive
mappings in the complex plane. Similar to [4], acrodynamic
performance of each wing design will be evaluated in
parallel by using NWT.

2 Transonic wing optimization using NACA airfoil
definition

The objective of the present optimizations of a three-
dimensional transonic wing is to design a wing geometry
that maximizes a Lift-to-Drag ratio (L/D) while maintaining
enough wing thickness to stand the bending moment due to
the lift distribution. Followings are the detail of the present
approach.

2.1 Geometry representation
To model the essence of the design of a wing, spanwise
distributions of maximum airfoil thickness and twist angle

are selected as design variables. To represent the wing
geometry, airfoil shapes are first specified at several
spanwise sections using NACA five-digit airfoil series. The
airfoil shape is given by NACA230xx where xx is a two-
digit number indicating the maximum airfoil thickness to
chord in percent. The camber line is specified by the first
three digits 230. By using this NACA airfoil definition, the
specification of the airfoil shape is reduced to only one
parameter. Planform of the wing is assumed to be given by a
supercritical wing from the NASA Energy Efficient
Transport (EET) Program [6].

Spanwise distributions of thickness and twist angle were
described by Spline polygons (control points) of (y, t) and (y,
o) where y, t and O are the spanwise location, thickness and
twist angle, respectively. Eight polygons are used to
determine each distribution, including the fixed wing root
and tip locations. The parameter for the thickness is given by
a real number between 5 and 20 here. The twist angle is
given in degree between -5 and 10. To avoid wavy surface
definition, the thickness and twist angle parameters are
always rearranged into numerical order from tip to root. The
wing surface is interpolated by using the second-order
Spline interpolation. Thus, in total, 28 parameters determine
the wing design.

2.2 GA operators

In GA, design variables are coded in a finite-length string as
genotype. The real number coding is used in this paper. In
the real number coding, the length of the string that
represents design candidates corresponds to the number of
design variables. These strings make up a population to be
evolved by GA. Initial population is created randomly.

The evolution process of GA is composed of four operators:
evaluation, selection, crossover, and mutation [7]. Figure 1
illustrates the flowchart of GA. Evaluation operator assigns
a fitness value to each member of the population according
to its objective function value. Here, the fitness value is
determined by the ranking of each individual among the
population. The objective function is L/D with a penalty for
a structural constraint in this study. A Navier-Stokes solver
is used to evaluate L/D of each member (design candidate).
The flow solver uses TVD type upwind differencing scheme
[8] and the LU-SGS implicit scheme [9]. Multigrid method
[10] is applied to the N-S code to accelerate the convergence.
Evaluation of each member is distributed to one processing
element of NWT so that the evaluations are processed in



parallel.

A structural constraint is also introduced to obtain a realistic
wing in the transonic regime. For the brevity, the wing and
its spanwise lift distribution are replaced by a cantilever and
concentrated loads, respectively. From the loads, the
bending moment distribution is calculated, which gives the
structural stress on the wing. Then the constraint is given so
that the local stress is less than the ultimate shear stress of
Aluminum alloy 2024-T351 [5].

Selection is a process in which individual strings are copied
in mating pool according to their fitness function values.
This implies that a string with a higher value has a higher
probability of contributing one or more offsprings in the
next generation. The stochastic universal sampling [11],
instead of the typical roulette-wheel method [7] is used as a
selection operator. The best and the second best individuals
in each generation are transferred into a new generation

without crossover or mutation [12].

In this study, two different crossover operators are used to
generate one half of the next generation each: the uniform
crossover [13] and the evolutionary direction operator [14].
In the uniform crossover, each pair of strings undergoes
exchanges of their genes (design variables); this results in a
pair of strings of the new generation. The probability of
exchanging each gene is set to 40 %. This crossover
contributes to the global search of GA.

The evolutionary direction operator is a modified crossover
operator that estimates the direction of evolution from the
selected parents. Conventional GA is good at finding a
neighborhood of a global optimum but poor at locating an
exact optimum within this neighborhood. In other words,
convergence of GA becomes slower as it approaches to the
optimum. The evolutionary direction operator improves the
convergence without any extra CPU time. See [14] for
details.

Mutation is a random walk of a string that will occur during
the crossover process at a given mutation rate. This operator
keeps diversity of a population and promotes the search in
the solution space that cannot be represented by the strings
of the present population. The combination of mutation and
recombination allows in principle for leaving a smaller hill
and therefore prevents evolution from getting stuck on local
extreme. In this paper, mutation takes place at a probability

of 10% and then adds a random disturbance to the parameter
in the amount up to= 1 for the thickness t and the twist angle
a, and %0.3 for the spanwise location y.

2.3 Results

2.3.1 Aerodynamic design optimization
Transonic wing optimization without the structural
constraint was first performed. Aerodynamic optimization
was performed at the freestream Mach number of 0.76, an
angle of attack of 0 degree and the Reynolds number based

on the root chord of 107,

The optimization history is illustrated in Figure 2. The entire
population converges to an optimum wing in 15 generations.
It takes about 80 minutes of CPU time on NWT to advance a
generation. The average fitness curve is very close to the
best fitness of the population. This is probably because the
thickness reached the lower limit of five percent to the chord
as shown later. The planform of the designed wing and its
airfoil profiles at selected spanwise sections are illustrated in
Figure 3.

Wing thickness distribution is shown in Figure 4. Since the
thickness of 0.05 chord is the minimum limit of the search
space, the wing minimizes the wing thickness as much as
possible except at the root region, so as to reduce the wave
drag. Wings designed by inverse methods were reported to
have disproportionately large thickness near the root similar
to the wing designed here.

Figure 5 shows the twist angle distribution of the designed
wing in degree. Aerodynamic washout is seen to minimize
the induced drag. A twist of more than five degrees is known
to result in unacceptably large induced drag increments by
experiment [15]. The present design satisfies this design
criterion.

Figure 6 shows the resulting lift distribution compared with
the parabolic distribution which is known to give the
minimum induced drag when the structural constraint is
considered [16]. Although no structural constraint is applied
here, the lift generated at the outboard section of the wing is
suppressed to avoid the excessive wave drag due to the
shock wave. This is similar to the lift distribution constraint
by the bending moment. Therefore, the computed lift
distribution closely resembles the parabola. This figure
indicates that the designed wing achieves the minimum
induced drag.



Figure 7 shows surface pressure contours on the upper
surface. A weak shock wave is seen near the leading edge
outboard from the kink location. No flow separation was
found. The straight isobar pattern suggests that the flow field
is nearly two dimensional in the spanwise direction. It
indicates a good design since it gives the same drag-
divergence Mach number from root to tip. From these
observations, GA has found an optimum solution in the
design space.

2.3.2 Effect of structural constraint

Next, the structural constraint is applied to the aerodynamic
optimization. The convergence history of the present
optimization is shown in Figure 8. The optimum was
obtained in 50 generations. During the optimization, some
members had a strong shock wave or failed to satisfy the
structural constraint. However they were weeded out from
the population because of the resultant penalties to the
fitness. Wing geometry of the designed wing is presented in
Figure 9.

Wing thickness distribution is given in Figure 10. The
maximum thickness constraint appears at the kink and the
designed thickness distribution satisfies it. At the wing tip
the thickness is 0.05, that is, the minimum thickness in the
search space. The designed wing is the thinnest wing
allowed by the structural constraint. Figure 11 illustrates the
twist angle distribution.

Figure 12 compares the computed spanwise load distribution
with the parabolic loading distribution. The optimized wing
has failed to realize the parabolic distribution. The lift at the
midspan region is required to be increased to achieve the
parabolic distribution, but it would result in an unacceptably
large wave drag associated with a stronger shock wave.

Pressure contours in Figure 13 illustrate the flow structure
on the upper surface of the designed wing. The pressure
contours are nearly two-dimensional in the spanwise
direction, despite of the large variation of thickness and twist
angle distributions. No flow separation was seen, although a
strong shock wave was found at the midspan.

These results indicate that there is a tradeoff between the
increase of the structural strength and the reduction of the
wave drag. With the present simplified airfoil definition, the
wing thickness enough to stand the bending moment causes

a strong shock wave since NACA 5-digit series are subsonic
airfoils. Nevertheless, GA has found a best feasible solution
under the structural constraint.

Breakthrough for the dilemma of having enough thickness
and avoiding a strong shock wave has been given by
supercritical airfoil sections. This leads to a wing
optimization with the airfoil shape optimization at each
section. However, such an approach will require much more
control points, which lead to an order of magnitude increase
of the design variables. Hence a proper encoding method
with smaller design variables is desired. As a candidate for
this, the extended Joukowski airfoil definition is considered

in the next section.

3 Transonic wing optimization using the extended
Joukowski transformation

3.1 Geometry representation

In this section, airfoils are represented by the extended

Joukowski transformation. It transforms a unit circle to

various kinds of airfoils in the complex number plane by two

consecutive conformal mappings as,

Z,=1e+ 7, (N
7,=7y-€/(Zy-1) 2)
Z=7,+1/Z, 3)

here Z, Z,, Z,, Z, and € are complex numbers and A, r, and 6
are real numbers.

This transformation is therefore defined by Z, €, and A
where r is determined so that Z, passes the origin of the
coordinate axes. In this study, a position (X,y,) which is the
center of the unit circle Z,, a position (x,y,) which is
transformed to the trailing edge of the resulting airfoil, and
the preliminary movement in the real axis A are used as the
design variables, because x, X, and Aare known to
contribute to the airfoil thickness while y, and y, define the
airfoil camber line. The complex number € is given by (x,,y,)-
As a result, an airfoil shape is specified by five parameters.

of the
parameters and twist angle are then described by Spline

Spanwise distributions extended Joukowski
polygons (control points) of (y,,J;) i=1,...,5 and (y,,0) where
y, J; and a are the spanwise location, the extended

Joukowski parameters and twist angle, respectively. These



design variables are bounded as Table 1:

Design Lower-bound | Upper-bound
Variable
Ji(x0) -0.1 0
Jy(vo) 0 0.1
Js(x,) 1 1.05
Jy () -0.05 0.05
J5(B) 0 0.8
NE 0 1.88
a -5 deg. 10 deg.
Y, 0 1.88

Table 1 Boundaries of design variables
(root chord = 1)

Five polygons are used to determine each distribution,
including the fixed polygons at the wing root and tip. The
extended Joukowski parameters are again rearranged from
tip to root according to the airfoil thickness so that the
resulting wings always have maximum thickness at the wing
root. The twist angle parameter is also rearranged into
numerical order from tip to root. The wing surface is
interpolated by using the second-order Spline interpolation.
In total, 34 parameters determine a wing geometry.

When the initial population is created randomly, most of the
population do not satisfy the constraint. Thus, GA converges
prematurely. To avoid this, the initial population is created
as follows. 1) The preliminary population is created
randomly in the design space. 2) The population is evolved
to obtain 10 design candidates that satisfy the structural
constraint. 3) The initial population is created by these 10
individuals and their mutants. Mutants are made from a
random disturbance to the extended Joukowski parameters
in the amount up = 10% of the range given in Table 1.

3.2 Results

The final optimization was performed at the freestream
Mach number of 0.8, an angle of attack of 0 degree and the
Reynolds number based on the root chord of 107. The
freestream Mach number is higher than that of the previous
case by 0.04. The population size is reduced to 50. Figure 14
illustrates the convergence history. The resultant wing has
the rear loading, as thus the lift-to-drag ratio has increased to
19.56.

Figure 15 shows surface pressure contours on the upper
surface of the designed wing. Compared to Figure 13, the
shock wave is weakened and only seen between the two kink
locations, although the isobar pattern is lost. Figure 16
illustrates the spanwise lift distribution. The parabolic
distribution was not achieved, either. This is probably due to
a premature convergence as seen in the thickness
distribution of the designed wing in Figure 17. The plot
indicates that the wing is unnecessarily thick.

To obtain an optimum thickness, three of the extended
Joukowski parameters have to cooperate with each other.
There is a possibility, though, that crossover operator
destroys their cooperation. Further investigations are
necessary for appropriate GA operators as well as the airfoil
definition.

4 Conclusions

GA has been applied to optimize a transonic wing shape for
generic transport aircraft by using the three-dimensional
compressive Navier-Stokes equations with a structural
constraint on the wing thickness. To overcome enormous
computational time necessary for this optimization the N-S
computations were processed in parallel on NWT. As a
result, the CPU time for one generation was reduced to
about 80 minutes on NWT, and thus the total CPU time
necessary for the optimization became about 2 days.

The transonic wing optimization using NACA airfoil
definition were first performed without the structural
constraint. The designed wing has a fully attached flow and
the allowable minimum thickness so that profile drag and
wave drag are minimized. The resulting parabolic loading
indicates that the induced drag is also minimized in this
problem. These results confirm the validity of the present
approach.

In the next optimization case with the structural constraint, a
tradeoff between the increase of the structural strength and
the reduction of the wave drag was observed. The
multidisciplinary optimization approach considering both
structural and aerodynamic optimization will be investigated
in future.

In the final optimization case, the extended Joukowski
transformation was used for the airfoil definition of the wing.
Though L/D was improved even at a higher Mach number



than the previous cases, only a premature solution was
obtained. To obtain a fully converged optimum design,
further investigations should be made into the GA operators
such as initialization of a population and crossover. In
addition, an appropriate airfoil definition will be examined
by using the multiple mappings in the Joukowski
transormation.

Acknowledgement
This work was partly supported by de Havilland Inc.,
Canada.

REFERENCES

[1] Gage, P. and Kroo, L., “A Role for Genetic Algorithms
in a Preliminary Design Environment,” AIAA Paper
93-3933, 1993.

[2] Obayashi, S. and Tsukahara, T., “Comparison of
Optimization Algorithms for Aerodynamic Shape
Design,” AIAA Paper 96-2394, 1996.

[3] Yamamoto, K. and Inoue, O., “Applications of Genetic
Algorithm to Aerodynamic Shape Optimization,”
ATAA Paper 95-1650, 1995.

[4] Obayashi S. and Oyama, A., “Three-Dimensional
Aerodynamic Optimization with Genetic Algorithm,”
the Second ECCOMAS Conference on Computational
Fluid Dynamics, Paris, September, 1996.

[5] Case, J., Chilver, A. H., and Ross, C. T. F., Strength of
Materials & Structures with an Introduction to Finite
Element Methods, 3™ Edn., Edward Arnold, London,
1993.

[6] Jacobs, P. F., “Experimental Trim Drag Values and
Flow-Field Measurements or a Wide-Body Transport
Model with Conventional and Supercritical Wings,”
NASA TP 2071, 1982.

[71 Goldberg,
Optimization and Machine Learning, Addison-Wesley

D. E., Genetic Algorithms in Search,

Publishing Company, Inc., Reading, 1989.

[8] Obayashi, S. and Wada, Y., “Practical Formulation of a
Positively Conservative Scheme,” AIAA Journal, 32,
1093-1095, 1994.

[91 Yoon, S., Jameson, A. and Kwak, D., “Effect of
Artificial Diffusion Scheme  on Multigrid
Convergence,” AIAA Paper 95-1670, 1995.

[10] Jameson, A., “Solution of the Euler Equations for Two-
Dimensional Transonic Flow by a Multigrid Method,”
Applied Mathematics and Computation, Vol.13, pp.
327-356, Nov. 1983.

[11] Baker, J. E., “Reducing Bias and Inefficiency in the

Section Algorithm,” Proceedings of 2™ International
Conference on Genetic Algorithm, 1987.

[12] Davis, L., Handbook of Genetic Algorithms, Van
Nostrand Reinhold, New York, 1990.

[13] Michalewicz, Z. and Schoenauer, M., “Evolutionary
Algorithms for Constrained Parameter Optimization
Problems,” Evolutionary Computation, Vol. 4, No. 1,
pp- 1-32, 1996.

[14] Yamamoto, K. and Inoue, O., “New Evolutionary
Direction Operator for Genetic Algorithm,” A/4A4
Journal, Vol. 33, No. 10, pp. 1990-1992, Oct. 1995.

[15] Torenbeek, E., Synthesis of Subsonic Airplane Design,
Kluwer Academic Publishers, Dordrecht, 1982.

[16] Jones, R.T., Wing Theory, Princeton University Press,
1990.

INITIAL
__POPULATION
T

Y
EVALUATION
Y

SELECTION

T
Y

CROSSOVER

~ - EVOLUTIONARY
q [D

IRECTION OPERATO

g

MUTATION

OPTIMUM

Figure 1 Flowchart of GA



25
PECEERE 0
/// 4
; =B
4 3
20 p = K
= o
/ =, ——
: 3 o
% 15 s o1
TWIST ANGLE I \
; 0™ © CONTROLPOINT | \
0 1 ] ] ]
0 0.2 0.4 0.6 0.8 1
MAXIMUM 2Y/B
----- AVERAGE
| |
5 0 5 10 s 20 Figure 5 Spanwise twist angle distribution
GENERATION
0 e e e e e B e B N
N o) i
02_8\@\0 0\@\( ]
Figure 2 Optimization history 015 : ;\@\o\g ]
= oF \ ]
E L i
. a L ]
- 0.1F \ ]
S 0osH © COMPUTED LIFT ]
L PARABOLA \i
0;)...(;2...(;4...06...08...01
—_ ) 2y '
S ——— Figure 6 Spanwise lift distribution

Figure 3 Optimum wing design

0.14 s _
; | | | 1 /
012t THICKNESS i
s o CONTROLPOINT [
E 0.1
9 \ ]
5r ]
I 0.08
B \ ]
0.06 | T 1
:O A4 _)
004 L1 L1 L1 L1 L1
0 0.2 0.4 0.6 0.8 1

2Y/B

Figure 4 Spanwise thickness distribution

Figure 7 Pressure contours on the upper surface



4
=
20 = 2
18 = 0
16 T £ \
J =22
/ L 4 \
14 [
nH “0 02 04_06 08 1
I. 2Y/B
10 ¢
! —— MAXIMUM : e stributi
8 [ ] AVERAGE |‘ Figure 11 Spanwise twist angle distribution
6 : ! ! !
0 10 20 30 40 50 60
GENERATION 0.3
0.25
Figure 8 Optimization history
0.2 S
o
_ 0.15 o
—_ AP
0.1 .
_ o
005 © COMPUTED LIFTI 9
- — PARABOLA °5
o)
= 00 0.2 04 0.6 0.8 1
2Y/B
T
Figure 12 Spanwise lift distribution
Figure 9 Optimum wing design
0.14
0.12 %

S
—
T
|
\
/
b

THICKNESE
[}
S
o]

\ . )
0.06 -
. b

0.04 .

THICKNESS I N
0.02H----- MINIMUM THICKNESS A

CONTROL POINT Tk

0 0.2 0.4 0.6 0.8 1
2Y/B

Figure 10 Spanwise thickness distribution .
Figure 13 Pressure contours on the upper surface



20

18

16

14 ~

12 L

10 —
! — MAXIMUM

S H—T—T1----- AVERAGE

6L [
0 5 10 15 20 25 30

GENERATIONS

Figure 14 Optimization history

Figure 15 Pressure contours on the upper surface

0.3

0.25 M

0.2 %\o
N

0.15 e
o
(o]
0.1 © o
' (o]
0.05 F O  COMPUTED LIFT lal
: PARABOLA ° . \
0 ] ] o
0 0.2 0.4 0.6 0.8 1
2Y/B
Figure 16 Spanwise lift distribution
0.14 THICKNESS
----- MINIMUM THICKNESS
0.12 —
ﬁ T N \
= 01 \
i Y
£ 0.08 . \
0.06 \
0.04 .
0 0.2 0.4 0.6 0.8 1
2Y/B

Figure 17 Spanwise thickness distribution



