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Abstract- An efficient and useful robust optimization ap-
proach, design for multi-objective six sigma (DFMOSS),
has been developed. The DFMOSS couples the ideas
of design for six sigma (DFSS) and multi-objective ge-
netic algorithm (MOGA) to solve drawbacks of DFSS.
DFMOSS obtains trade-off solutions between optimality
and robustness in one optimization. In addition, it does
not need careful parameter tuning. Robust optimiza-
tions of a test function and welded beam design problem
demonstrated that DFMOSS is more effective and more
useful than DFSS.

1 Introduction

Design optimization approaches have been applied to var-
ious engineering design problems aiming at better design
and automated design process. However, because of er-
rors and uncertainties in design process, manufacturing pro-
cess, and operating condition in real-world engineering de-
signs, a design optimized by a traditional design optimiza-
tion method seeking only optimality may not achieve its ex-
pected performance.

Thus, the idea of robust optimization considering both
the optimality and the robustness of objective function and
constraints has been paid attention to for real-world design
problems in recent years. Here, robustness is defined as sta-
bility of system against uncertainties, e.g., the dispersion of
performance parameters due to the dispersion of design pa-
rameters caused by design errors or uncertainties. Figure 1
illustrates a robust optimization and a traditional optimiza-
tion. The solution A obtained by a traditional optimization
is the best in terms of the optimality but disperses widely
in terms of the objective function against the dispersion of
the design variable, and this dispersion may extend to the
infeasible range. On the other hand, the solution B obtained
by a robust optimization is moderately good in terms of the
optimality and also good in terms of the robustness; disper-
sion of the robust solution is narrow against the dispersion
of the design variable.

Optimality and robustness of an objective function is
usually competing in real-world problems. Therefore, there
exist multiple compromised solutions between the optimal-
ity and the robustness. Objective of a robust optimization
problem is to find these compromised solutions to reveal the
trade-off information and to give chance to the upper-level
decision maker to select one solution from the compromised
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Figure 1: Comparison of traditional optimization and robust
optimization

solutions with other consideration.

Up to the present, some robust optimization ap-
proaches have been developed and investigated to obtain
robust optimal solutions[engineous02, huyse02, putko02,
youn04, deb05]. Among these, a design for six sigma
(DFSS)[engineous02] is one of popular robust optimiza-
tion approaches because the formulation of DFSS is simpler
than that of other approaches. In fact, DFSS has been suc-
cessfully applied to various robust optimization problems
in various engineering fields[koch02, shimoyama04]. How-
ever, this approach has some drawbacks. First, DFSS finds
only one robust optimal solution in one optimization. Sec-
ond, DFSS does not guarantee that the obtained robust op-
timal solution satisfies the specified sigma level. Therefore,
users need to repeat robust optimization many times by us-
ing DFSS with different input parameter set until a satisfac-
tory robust optimal solution is obtained. In this sense, DFSS
is not efficient and not useful.

Multi-objective genetic algorithm (MOGA)[deb01] is an
evolution-based design optimization algorithm for multi-
objective optimization problems. Because the MOGA deals
with multiple solutions simultaneously and evaluates these
solutions based on Pareto-optimality concept, MOGA finds
multiple optimal solutions of multi-objective optimization
problem in one optimization and obtains the trade-off rela-



tion between competing objectives effectively.

Therefore, objective of the present study is to develop
a new efficient and useful robust optimization approach
by combining the ideas of DFSS and MOGA. To ensure
efficiency of the current approach named as “design for
multi-objective six sigma (DFMOSS),” robust optimization
of a test function and the welded beam design problem are
demonstrated. Rest of the paper is organized as follows:
Chapter 2 briefly describes DFSS. Chapter 3 presents idea
of DFMOSS. Chapter 4 presents simulation results. Chap-
ter 5 concludes current study.

2 Design for Six Sigma

Design for six sigma (DFSS)[engineous02] is one of con-
ventional robust optimization approaches. Here, the term
“sigma” refers to standard deviation o, which is a measure
of dispersion, and “six sigma” is one of the management
reform techniques aiming at the establishment of business
process with very small dispersion such that 6o is included
in the acceptable performance range. The level of disper-
sion can be defined as “sigma level n”, as shown in Fig. 2.
Larger sigma level indicates smaller dispersion, i.e., more
robust characteristic. Here, Fig. 2 shows the normal distri-
bution case but “six sigma” concept can be applied to any
probability density distribution cases.
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Figure 2: Characteristics of sigma level n

In a normal optimization (minimization) problem, objec-
tive function f of design variable  should be minimized as
follows.

Minimize: f(x) (H

In DFSS, this normal optimization problem is rewritten to
the problem in which both the mean value 1 ¢ and the vari-
ance o2 of objective function f(x) should be minimized
as follows.

Minimize: wy s + weo s> (2)

where w,, and w, are weighting factors. In addition, follow-
ing inequalities should be satisfied as constraints on sigma
level.

Subject to: yy —noy > LSL

3
py +nop < USL )

Here, n denotes the sigma level and LSL/USL denote the
lower/upper specification limits, respectively.

Figure 3 illustrates flowchart of robust optimization us-
ing DFSS. First, parameters such as weighting factors w,
and w,,, sigma level n, and LSL/USL are specified by users,
and then it proceeds to the optimization block. In this block,
py and o ¢ of f(x) at sample points around x are evaluated,
and w,us + w02 is treated as one objective function.
Then, yy —noy — LSL(> 0) and uy 4+ noy — USL(< 0)
are evaluated as two constraint functions. « in next step
is reproduced based on the evaluated objective and con-
straint functions, and this optimization process is iterated
until « is converged. This single-objective optimization can
be carried out by using any single-objective optimization
approaches.

DFSS illustrated in Fig. 3, however, has some drawbacks
as follows.

o It is necessary to set weighting factors w, and w,
carefully in advance. There exists arbitrariness in
specification of the weighting factors in Eq. 2. Users
need to specify value of these parameters according
to balance between the optimality and the robustness
they expect. However, it is difficult for users to spec-
ify value of weighting factors appropriately in ad-
vance because the trade-off information is unknown.
Eventually, users can not help carrying out robust op-
timization many times with different weighting factor
values until satisfactory solution is obtained.

e It is necessary to set appropriate sigma level n in
advance. Essentially, the sigma level satisfying Eq. 3
is known only after an optimization. However, users
must specify the sigma level blindly without any in-
formation. If users specify the sigma level too large,
a robust optimal solution may not be obtained by the
optimization because the constraints for sigma level
become too severe. On the other hand, if users set
the sigma level too small, the robust optimal solution
obtained by the optimization may have lack of relia-
bility. Eventually, users need to carry out robust op-
timization repeatedly until a feasible robust optimal
solution is found.

e Only one robust optimal solution is obtained
in one optimization. Because DFSS deals with
single-objective optimization problem considering
the weighted summation of the mean value and the
variance of objective function (w,py + w0 f2) as a
new objective function, only one robust optimal so-
lution is obtained by one DFSS optimization. There-
fore, users must carry out many optimizations with
different weighting factor values or the sigma level
to obtain multiple robust optimal solutions. More-
over, many optimizations can not necessarily derive
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trade-off relation between the optimality and the ro-
bustness.

3 Design for Multi-Objective Six Sigma

Drawbacks of the DFSS, as explained in the previous sub-
section, mainly come from the fact that the DFSS deals
with the single-objective optimization problem as shown
in Eq. 2. Therefore, idea of design for multi-objective six
sigma (DFMOSS) developed by the authors is to incorpo-
rate multi-objective genetic algorithm (MOGA)[deb01] into
DESS to solve the drawbacks of the DFSS. In DFMOSS, the
mean value £y and the standard deviation o ; of objective
function f(x) are treated as new multiple objective func-
tions and minimized separately as follows.

Minimize: ¢
4
of ( )

Because the formulation of DFMOSS does not include
the weighting factors w,, and w, which are seen in the for-
mulation of DFSS (Eq. 2), DFMOSS does not have diffi-
culty in the advance specification of weighting factors. In
addition, solving this multi-objective optimization problem
by using MOGA results in many robust optimal solutions in
one optimization. Furthermore, DFMOSS does not consider
the constraints for sigma level which are seen in the formu-
lation of DFSS (Eq. 3) during optimization process. Thus,
DFMOSS also does not have difficulty in the advance spec-
ification of sigma level n. The sigma level satisfying Eq. 3
can be evaluated from the robust optimal solutions obtained
by the optimization as post-processing, as explained later.

Figure 4 illustrates flowchart of robust optimization us-
ing DFMOSS. There is no need to specify parameters
such as weighting factors w,, and w,, sigma level n and
LSL/USL before optimization block, which is seen in the
DFSS (Fig. 3). In the optimization block using MOGA,
multiple solutions (individuals) i, xs,- -,y are dealt
with simultaneously. For each individual ¢ = 1,2,--- | N,
py, and oy, are evaluated as two separate objective func-
tions from f(x) at the sampled points around x,. Better
solutions are selected based on the Pareto-optimality con-
cept between puy, and oy, for ¢ = 1,2,--- , N. Solutions
T1,x2,- -, N in next step are reproduced by crossover
and mutation from the selected solutions. This optimization
process is iterated until the trade-off relation between p s
and o is converged, and multiple robust optimal solutions
are obtained.

In DFMOSS, the sigma level n satisfying Eq. 3 is eval-
uated from the obtained robust optimal solutions after the
optimization block, as illustrated in Fig. 4. Figure 5 illus-
trates detail of post-evaluation of sigma level. Now it is
assumed that four robust optimal solutions (solution A, B,
C and D) are obtained by a DFMOSS optimization. Painted
area indicates the area satisfying Eq. 3. Figure 5 shows that
the solution C is included in the painted area, that is, this
solution has more than no robustness quality. If the sigma
level n becomes smaller, the painted area becomes larger
(the gradient of broken lines by which the painted area is

bound becomes steeper) and the other solutions A, B and D
may be included in the painted area. Therefore, Fig. 5 also
shows that the other solutions A, B and D may have smaller
sigma level, i.e., less robust characteristic than the solution
C.
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Figure 5: Post-evaluation of sigma level

4 Simulation Results

The DFMOSS is applied to two robust optimization prob-
lems, and the simulation results obtained by using the DF-
MOSS are compared to those obtained by using the DFSS.
The first is a test function optimization problem, and the
second is a welded beam design problem.

4.1 Test Function Optimization Problem

A test function f(z) is defined as follows.

2
— exp (—%) cos (|x7|rom1) ®))

where the range of design variable is —0.5 < z < 5. Now
the robust optimization problem that both the mean value 1 ¢
and standard deviation o ; of objective function f(z) should
be minimized is considered.

Figure 6 shows the test function distribution (f(x)
against ). In a normal optimization problem that the ob-
jective function f(z) should be minimized, it is clear that
an optimal solution is x = 0. In the robust optimization
problem, on the other hand, x = 0 is the best in terms of
the optimality, but not good in terms of the robustness be-
cause the objective function f(x) disperse widely against
the dispersion of design variable x around x = 0. The opti-
mality becomes worse but the robustness becomes better in
order of hollows x = 0, 1, 2.16, 3.38 and 4.66 because the
hollow becomes shallower and gentler. Therefore, all these
five hollows can be the robust optimal solutions in this ro-
bust optimization problem.




Table 1: Optimization conditions of test function optimization problem

Population size 32
for SOGA/MOGA Number of generations 100
Mutation rate [%] 20

Sample size
Probability density distribution

for MCS random

1000
normal distribution

design variable Mean value value of each solution

Standard deviation 0.1

USL -0.2

LSL N/A
Sigma level 3o

for DFSS 1:1000, 1:100, 1:10
Wy : We 1:1, 10:1, 100:1
1000:1

f(x)

Figure 6: Test function distribution

This robust optimization problem is solved by using
the MOGA coupled with the DFMOSS, and the single-
objective GA (SOGA) coupled with the DFSS, respectively.
In both robust optimizations, the blended crossover (BLX-
0.5), random mutation and the Best-N selection are used.
Selection and constraint-handling are based on the Pareto-
based constraint-handling (PBCH) approach[oyama05] us-
ing the Pareto-ranking method[fonseca93] and the fitness
sharing[fonseca93]. The statistical values of objective func-
tion (uy and o) are evaluated by the Monte Carlo simula-
tion (MCS) with descriptive sampling (DS)[saliby90].

Table 1 shows the optimization conditions of test func-
tion optimization problem. The mean value of MCS random
design variable is set as the design variable of each solution.
The standard deviation of MCS random design variable, on
the other hand, is fixed at 0.1. In the robust optimizations
using DFSS, the sigma level is set as 30 in advance, and
total seven cases with different combination of weighting
factors (w,, : we) are carried out. In the robust optimiza-
tion using DFMOSS, on the other hand, it is not necessary
to set the sigma level in advance, and only one case is car-
ried out without setting weighting factors, as explained in
the previous section.

Figure 7 shows the robust optimal solutions (o ; against
tr ) and Table 2 shows the numerical data of the robust
optimal solutions of the test function optimization problem
obtained by using the DFSS and the DFMOSS, respectively.
In the robust optimization using DFSS, only two robust op-
timal solutions with more than 3o robustness quality (z =1
and 3.39) are obtained though total seven-time optimiza-
tions with different combination of weighting factors are
carried out. Here it is noted that essentially there exist total
three robust optimal solutions with more than 30 robust-
ness quality (z = 1, 2.16 and 3.38). These results indicate
that the DFSS does not have enough capability of finding
all robust optimal solutions. In this study, two robust opti-
mal solutions can be obtained because the advance setting
of sigma level as 30 is appropriate by chance. However, it
is not always guaranteed for the DFSS to obtain the robust
optimal solutions according to the advance setting of sigma
level.

In the robust optimization using DFMOSS, on the other
hand, all five robust optimal solutions (z = 0, 1, 2.16, 3.38
and 4.66) can be obtained successfully and effectively in
only one calculation, and it is understood easily that the
maximum sigma level which the robust optimal solutions
have is more than 30 by the post-evaluation.

4.2 Welded Beam Design Problem
[deb91, mezura-montes(3]

The welded beam structure is shown in Fig. 8. The welded
beam consists of a beam and a weld required to secure the
beam to the member. The objective of the design is to find
a feasible set of dimensions h, [, ¢t and b (denoted by x =
[x1, 22, 23, x4]) to carry a certain load (P) and still have a
minimum total fabricating cost.

The objective function f(x) is the total fabricating cost
which mainly comprises of the set-up cost, welding labor
cost and material cost:

f(x) = (1 + 1) z12x0 + comzay (L + x2) (6)

where ¢ and ¢y are the cost of unit volume of weld mate-
rial and bar stock, respectively. The associated functional
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Figure 7: Robust optimal solutions and sigma level of test

function optimization problem

Table 2: Numerical data of robust optimal solutions of test

function optimization problem

Wy, @ We ZT 12333 gf

1:1000 3.3804  -0.44811 0.079737
1:100 3.3803  -0.44812 0.079737

1:10 0.99987 -0.69769  0.1592

DFSS 1:1 0.99808 -0.69776  0.15927
10:1 0.99724  -0.69777  0.15934

100:1 0.99713  -0.69777  0.15935

1000:1  0.99712  -0.69777  0.15935

0.001737 -0.73406  0.29317

1.0023  -0.69747  0.15923

DFMOSS 2.159 -0.56617  0.11038
3.3835  -0.44815 0.079798
4.6596 -0.3499  0.058399

Figure 8: Welded beam structure

constraints are:

Subject to: 7(x) — Tmax < 0
() — omax <0
1 —24 <0
c11? 4 cawzay (L +22) —5 <0
0(x) — Omax <0
P—P(x)<0

)

where

T(x) = \/7’2 + 27"7'”;—; + 72
, P s MR

T Vanw T
M:P(L+%)

ZC22 ZC1+ZC3)2
R=4/—+
\/4 < 2 (8)

T

I22 xr1 + I3 2
=2{V2 =
J {\/—xle 12 + < 2 ) ‘|}
6PL 4PL3
o) = 2432’ o) = Ex33xy
4.013E /232145 /36 E
P.(x) = / 1- E\/ —
L2 2LV 4G
and
c1 = 0.10471, ¢y = 0.04811
P =6x10%[b], L = 14]in]
E=3x10"[psi], G =1.2x 10"[psi] )

Smax = 0.25[in],  Tmax = 1.36 x 10*[psi]
Omax = 3 x 10*[psi]

where 7(x), o(x), d(x) and P.(x) are weld shear stress,
bar bending stress, bar end deflection and bar buckling load,
respectively. The ranges of design variables are 0.125 <
1 < 5[in], 0.1 < 29 < 10[in], 0.1 < 25 < 10[in] and
0.1 < 24 < 5[in]. Now the robust optimization problem
that both the mean value uy and the standard deviation o ¢
of total fabricating cost f(x) should be minimized is con-
sidered.

The optimization methods are the same as those used
in the test function optimization problem in the previous
subsection. Table 3 shows the optimization conditions of
welded beam design problem. In the robust optimization
using DFSS, the sigma level is set as 60 in advance, and
total seven cases with different combinations of weighting
factors (w,, : w,) are carried out. In the robust optimization
using DFMOSS, on the other hand, it is not necessary to set
the sigma level in advance, and only one case is carried out
without setting weighting factors.

Figure 9 shows the robust optimal solutions (standard
deviation against mean value of total fabricating cost) of
welded beam design problem. In the robust optimization



Table 3: Optimization conditions of welded beam design problem

Population size 50

for SOGA/MOGA Number of generations 1000
Mutation rate [%] 20

Sample size 1000

for MCS random
design variables

Probability density distribution
Mean value

normal distribution
value of each solution

Standard deviation 0.01
USL 3
LSL N/A
Sigma level 60
for DESS 1:1000, 1:100, 1:10
Wy & We 1:1, 10:1, 100:1

1000:1

using DFSS, robust optimal solutions with more than 6o
robustness quality are obtained. However, these solutions
distribute very locally though total seven-time optimizations
with different combination of weighting factors are carried
out. These results indicate that the DFSS does not have
enough capability of finding robust optimal solutions glob-
ally. In this study, the robust optimal solutions can be ob-
tained because the advance setting of sigma level as 6o is
appropriate by chance. However, it is noted that it is not al-
ways guaranteed for the DFSS to obtain the robust optimal
solutions according to the advance setting of sigma level.

In the robust optimization using DFMOSS, on the other
hand, many robust optimal solutions can be obtained ef-
fectively in only one optimization, and these solutions dis-
tribute globally and uniformly. Also it is understood easily
that the maximum sigma level which the robust optimal so-
lutions have is more than 60 and total twenty-one robust
optimal solutions have more than 60 robustness quality by
the post-evaluation.
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2 25 3 3.5 4

mean of total fabricating cost

Figure 9: Robust optimal solutions and sigma level of
welded beam design problem

5 Conclusions

In this study, a new robust optimization approach DFMOSS
was developed by coupling the ideas of DFSS and MOGA.
The DFMOSS has some advantages compared to the DFSS
as follows.
e Itis not necessary to set weighting factors in advance.
e It is not necessary to set the sigma level in advance.

e Multiple robust optimal solution can be obtained in
only one optimization.

DFMOSS was applied to test function optimization
problem and welded beam design problem. The optimiza-
tion results obtained by using the DFMOSS were compared
to those obtained by using the DFSS. These results showed
that the DFMOSS had more effective and more useful char-
acteristics than the DFSS.
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