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ABSTRACT

A multiobjective design optimization tool for
multistage compressors has been developed.
Multiobjective Evolutionary Algorithm is used to
handle multiobjective design optimization problems.
Performances of compressors are evaluated by using
the axisymmetric through-flow code UD0300M that
employs the streamline curvature method. To
demonstrate feasibility of the present method, a
multiobjective optimization of a four-stage compressor
design was performed for maximization of the overall
isentropic efficiency and the total pressure ratio. Total
pressure and solidities at the rotor trailing edges, and
flow angles and solidities at the stator trailing edges are
considered as design parameters. The present method
obtained hundreds of reasonable and uniformly
distributed Pareto-optimal solutions that outperformed
the baseline design in both objectives. Detailed
observation of the Pareto-optimal designs revealed
some design criteria for multi-stage compressor
designs.

INTRODUCTION

The design of an engine component such as multi-stage
compressor is a formidable challenge for designers.
The first reason is that it usually involves a large
number of design parameters to be optimized.
Therefore, it is almost impossible for an experienced
designer to find an optimum design by trial and error.
Another reason is that it is typically a multiobjective
problem (MOP) that simultaneously involves some
competing objectives such as maximization of
efficiency, maximization of mass flow rate,
maximization of total pressure ratio, minimization of
weight, maximization of durability, etc.

While single objective optimization problems
may have a unique optimal solution, MOPs present a
set of compromised solutions, largely known as the
tradeoff surface, Pareto-optimal solutions or non-
dominated solutions1. These solutions are optimal in
the sense that no other solutions in the search space are
superior to them when all objectives are considered
(Fig. 1). The goal of MOPs is to find as many Pareto-
optimal solutions as possible to reveal tradeoff
information among different objectives. Once such
solutions are obtained, the higher-level decision-maker
will be able to choose a final design with further
considerations.
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Traditional design methods such as the
gradient-based methods2,3 are single objective
optimization methods that optimize only one objective.
These methods usually start with a single baseline
design and use local gradient information of the
objective function with respect to changes in the design
variables to calculate a search direction. When these
methods are applied to a MOP, the problem is
transformed into a single objective optimization
problem by combining multiple objectives into a single
objective typically using a weighted sum method. For
example, to minimize competing functions f1 and f2,
these objective functions are combined into a scalar
function F as

  2211 fwfwF ⋅+⋅=  , 121 =+ ww (1)

This approach, however, can find only one of the
Pareto-optimal solutions corresponding to each set of
the weights w1 and w2. Therefore, one must run many
optimizations by trial and error adjusting the weights to
get Pareto-optimal solutions uniformly over the
potential Pareto-front. This is considerably time
consuming in terms of human time. What is more,
there is no guarantee that uniform Pareto-optimal
solutions can be obtained. For example, when this
approach is applied to a MOP that has concave tradeoff
surface, it converges to two extreme optimums without
showing any tradeoff information between the
objectives (Fig. 2).

Evolutionary Algorithms (EAs, for example,
see [4]), on the other hand, are particularly suited for
MOPs. By maintaining a population of design
candidates and using a fitness assignment method
based on the Pareto-optimality concept, they can
uniformly sample various Pareto-optimal solutions in
one optimization without converting a MOP into a
single objective problem. In addition, EAs have other
advantages such as robustness, efficiency, as well as
suitability for parallel computing. Due to these
advantages, EAs are a unique and attractive approach
to real-world design optimization problems such as the
multi-stage compressor design optimization problem.
Recently, EAs have been successfully applied to single
objective and multiobjective aerospace design
optimization problems4-8.

The objective of the present study is to develop and
demonstrate a design optimization method for multi-
stage compressors. The multiobjective evolutionary
algorithm (MOEA) and an axisymmetric through-flow
code (UD0300M) are coupled to maximize the overall
isentropic efficiency and total pressure ratio of a multi-
stage compressor.

EVOLUTIONARY ALGORITHMS

EAs mimic mechanism of natural evolution, where a
biological population evolves over generations to adapt
to an environment by selection according to fitness,
recombination and mutation of genes (Fig. 3). In EAs,
a design candidate, objective function values, and
design variables usually correspond to an individual,
fitness, and genes, respectively.

Starting with an initial population of design
candidates that is often generated by random sampling
from the design space, EAs select good design
candidates in terms of fitness, which is assigned on the
bias of their objective function values. Typically,
fitness of a design candidate is its objective function
value itself for a single objective problem. For a MOP,
an individual’s fitness is determined according to the
Pareto-optimal concept. Recombination is applied,
where new population is generated by exchanging
features of the selected designs with the intent of
improving the fitness of the next generation. Then,
mutation is applied to design parameters of the new
population to maintain diversity in the population. EAs
for MOPs are called multiobjective evolutionary
algorithms (MOEAs).

One of the key features of EAs is that it
searches from multiple points in the design space in
contrast to the traditional methods that usually move
from a single design point. In addition, EAs use
objective function values alone to determine a search
direction and do not require derivatives or gradients of
the objective function while the traditional methods use
local gradient information of an objective function.
These features also lead to some advantages such as
1) Capability of sampling various Pareto-optimal

solutions in parallel: By maintaining a population
of solutions and introducing the concept of Pareto-
optimality for fitness assignment, EAs can
uniformly sample various Pareto-optimal solutions
in parallel when applied to MOPs.

2) Robustness: Deterministic methods such as the
gradient-based methods typically start with single
design point and use the local gradient information
to determine a search direction. Optimization
depending on such local information lead to a
local, not necessarily a global optimum nearby the
stating point. In contrast to them, EAs determine
their search direction globally and probabilistically
but efficiently using their unique operators so-
called recombination and mutation that give EAs
capability of finding global optimums. Compared
with other probabilistic methods such as the
simulated annealing method3 that is similar to the
gradient-based methods but tries random step
according to the so-called Boltzmann probability
distribution, EAs are more robust because they
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maintain a population of design candidates and
they don’t use function gradients that direct the
search toward a local optimum. In addition, EAs
have capability to handle any design problems that
may involve non-differentiable objective function
and/or a mix of continuous, discrete, and integer
design parameters.

3) Suitability to parallel computing: Because EAs are
population-based search algorithms, all design
candidates in each generation can be evaluated in
parallel by using a simple master-slave concept.
Parallel efficiency is extremely high, if objective
function evaluations consume most of CPU time.

4) Simplicity in coupling evaluation codes: Because
EAs use only objective function values of design
candidates, EAs do not need substantial
modification or sophisticated interface to
evaluation codes. If an all-out re-coding were
required to every optimization problem, extensive
validation of the new code would be necessary
every time. EAs can save such troubles.

The present MOEA uses floating-point
representation, where an individual is characterized by
a vector of real numbers. It is natural to use the
floating-point representation for real parameter
optimization problems instead of binary representation
because it is conceptually closest to the real design
space, and moreover, the string length is reduced to the
number of design variables.

To introduce the Pareto-optimality concept to
the present MOEA, Fonseca’s Pareto-based ranking
method9 is used for fitness assignment where an
individual’s rank corresponds to the number of
individuals in the current population that are better than
the corresponding individual in every objective
function. Fonseca’s ranking method for a minimization
problem is shown in Fig. 4. Then, the N best
individuals are selected according to their ranks from
both the present N design candidates and the previous
N design candidates for mating pool where population
size is set equal to N 10. A standard sharing function11 is
incorporated to maintain diversity in the population.

To generate new design candidates, the
blended crossover (BLX-α) is applied to the best N
individuals where mating is determined randomly. The
blended crossover is the most common approach for
recombination of two parents represented by a vector
of real numbers proposed by Eshelman and Schaffer12.
In this approach, children are generated on a segment
defined by two parents, but the segment may be
extended equally on both sides determined by a user
specified parameter α. Thus, a child solution is
expressed as

  2)1(11 ParentParentChild ⋅−+⋅= γγ  (2)

  21)1(2 ParentParentChild ⋅+⋅−= γγ (3)

where

  γ = ( 1 + 2α ) u - α  (4)

Child1, Child2 and Parent1, Parent2 denote design
parameters of the children and parents, respectively. u
is uniform random number in [0,1]. Schematic view of
BLX-α is shown in Fig. 5. When an EA is applied to a
design optimization problem, what is important is the
balance of two conflicting goals: exploiting good
solutions and exploring the search space13. Thus, BLX-
0.5 is used in which both exploration and exploitation
are carried out equally.

Since the strong elitism is used, high mutation
rate of 0.2 is applied and a random disturbance is added
to the parameter in the amount up to ±20% of the
design space. Unbiased initial population is generated
by randomly spreading solutions over the entire design
space in consideration. Population size and number of
generations are set to 300 and 1000, respectively.

COMPRESSOR PERFORMANCE
EVALUATION

Program UD0300M14 essentially consists of two
sections, i.e., an aerodynamic analysis section and a
blade geometry definition section. In the aerodynamic
analysis section, the program solves the momentum
and continuity equations assuming the flow through the
compressor is axisymmetric and inviscid. The
momentum equation includes entropy gradients in the
cross-streamwise and streamwise directions, and also
the blade forces. The aerodynamic analysis section can
be run either in the analysis mode or design mode. To
define the angular momentum distribution, the user
specifies the radial distributions of total pressure, total
enthalpy, absolute angular momentum, or absolute
whirl velocity at each computing station in the design
mode. The relative flow angle distribution at each
station is specified directly or by specifying the blade
angle and deviation angle distribution in the analysis
mode.

To solve the system of equations, the program
uses the streamline curvature method. In the streamline
curvature method, a computing mesh is formed by the
intersection of the defined computing stations with the
computed streamlines. The computing stations are
located at strategic points in the flow field preferably,
but not necessarily, close to orthogonal to the local
meridional streamline direction. The computing
stations can be placed within any or all blade rows,
when detailed blade evaluations are required. An initial
estimate of the streamline locations is made by the
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user. First, the flow within the compressor is computed
on the basis of this estimate and the resulting flow
distribution updates the streamline locations. This
procedure is repeated until the streamline pattern
converges within a user-specified tolerance. Here,
losses occurring for each blade row are recalculated
and continuously updated as the computation proceeds.
The shock loss of stators is specified to be zero. Using
the resulting flow distribution, blade camber, blade
chord and number of blades are obtained by running
the blade geometry definition section. Complete details
of the formulation and the solution procedure are given
in [14].

FORMULATION OF OPTIMIZATION
PROBLEM

In the present study, a design optimization of a four-
stage compressor with one guide vane, four rotors and
four stators is demonstrated. Figure 6 shows the
baseline compressor design and its computation mesh
used for aerodynamic analysis. One of the major
objectives for a multi-stage compressor design is
maximization of the overall isentropic efficiency.
However, single objective optimization of the
efficiency results in a drop in the total pressure ratio15.
Therefore, multiobjective optimization is formulated in
the present study where the objectives of the present
design are maximization of the overall isentropic
efficiency and the total pressure ratio. Because these
objectives are competing each other, the solution is not
a single optimum but a set of Pareto-optimal solutions.

The radial distributions of total pressure and
solidities at rotor trailing edges and flow angles and
solidities at stator trailing edges are chosen as design
variables to be optimized because they have a direct
impact on the overall efficiency as well as the total
pressure ratio. These radial distributions are expressed
by using a cubic-spline interpolation scheme where
each curve is defined by five control points at specified
radial stations. These control points are taken as design
parameters. As a result, the design problem has 80
design parameters (eight blades times two radial
distributions times five control points). The search
range of each parameter is set to ±10% of the baseline
design. A constraint is applied to diffusion factor of
each rotor and stator to be smaller than 0.55 to avoid
obtaining designs with flow separations.

RESULTS

The numerical results were obtained on a SGI
workstation and CPU time required for the entire
optimization was approximately 3 hours and 40
minutes. An execution of EA resulted in 222 different

Pareto-optimal designs. Figure 7 shows the overall
isentropic efficiency and the total pressure ratio of the
Pareto-optimal designs and the baseline design. The
present MOEA found reasonable Pareto-optimal
designs including a design that improved the isentropic
efficiency by over 1% (from 0.866 to 0.876) while
maintaining the total pressure ratio (shown by “high
efficiency design” in the Fig. 7) and a design that
improved the total pressure ratio by more than 9%
(from 5.19 to 5.66)  while maintaining the efficiency
(shown by “high Pt ratio design” in the Fig. 7).

Figures 8-11 compare radial distributions of
rotor solidities of the baseline and the two Pareto-
optimum designs. The rotor solidity distributions of the
optimized designs were basically minimized to
improve the efficiency. The solidity distributions of
rotor 4 in midspan region is not minimized to avoid
diffusion factor greater than 0.55. Lower solidity
translates into shorter chord and/or smaller number of
blades.

Figures 12-15 compare the rotor total pressure
distributions. The reason why the total pressure of the
high efficiency design in the Fig. 15 exceeds the upper
search bound near the hub is that the search boundaries
are applied only to the control points. The high
efficiency design has higher total pressure in mid-span
region and lower total pressure in hub and tip region at
rotor 1 and rotor 2. The optimum design obtained by
maximizing the isentropic efficiency using a gradient-
based method in [15] has similar distributions. The
high efficiency design results in total pressure lower
than that of baseline design in rotors 1-3. On the other
hand, the high Pt ratio design has generally higher total
pressure ratio than the baseline design in order to
increase the total pressure ratio. However, the total
pressure distributions do not reach the upper limit
because excessively large total pressure would results
in diffusion factor greater than 0.55.

Figures 16-19 compare stator solidity
distributions. The stator solidity distributions of the
high efficiency design are minimized in stators 1-3 to
improve the overall efficiency. The solidity distribution
of stator 4 is not minimized to avoid diffusion factor
greater than 0.55. The stator solidity distributions of the
high Pt ratio design are also small but larger than those
of the high efficiency design. The reason is that the
high Pt ratio design is more sensitive to the diffusion
factor constraint and smaller solidity distributions
could lead to diffusion factor greater than 0.55.

Figures 20-23 compare stator flow angle
distributions. The stator flow angle distributions of the
optimized designs are very complicated. One of the
reasons is that the stator flow angle is less sensitive to
the design objectives and constraint compared with the
other design parameters. The flow angle distributions
of stator 4 of the optimized designs are high because
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stator 4 is more sensitive to the diffusion factor
constraint and smaller flow angle would result in
violation of the constraint.

CONCLUSIONS

A multiobjective design optimization tool for
multistage compressors has been developed.
Multiobjective Evolutionary Algorithm is used to
handle multiobjective design optimization problems.
Performances of compressors are evaluated by using
the axisymmetric through-flow code UD0300M that
employs the streamline curvature method.

To demonstrate feasibility of the present
method, a multiobjective optimization of a four-stage
compressor design was demonstrated for maximization
of the overall isentropic efficiency and the total
pressure ratio. The diffusion factor is constrained to
avoid designs involving flow separation. Total pressure
and solidities at the rotor trailing edges, and flow
angles and solidities at the stator trailing edges are
considered as design parameters. The present method
obtained hundreds of reasonable and uniformly
distributed Pareto-optimal designs that include designs
outperforming the baseline design in both objectives.
Detailed observation of the Pareto-optimal designs
revealed some design criteria for multi-stage
compressor designs.
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Figure 1. The concept of Pareto-optimality. This is an
example of MOPs, which minimizes two conflicting
objectives f1 and f2. This MOP has innumerable
compromised Pareto-optimal solutions such as
solutions A, B, and C. These solutions are optimal in
the sense that there is no better solution in both
objectives. One cannot say which is better among these
Pareto-optimal solutions because improvement in one
objective degrades another.
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Figure 2. Weighted-sum method applied to a MOP
having a concave Pareto-front. Any combination of
weights w1 and w2 would results in the extreme
optimum A or B. A gradient-based method may stack
in a local optimum C due to complexity of the
objective function distributions.
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Figure 3. Flowchart of the present evolutionary
algorithm.
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solutions A, B, C are Pareto-optimal these solutions
rank first. The solutions D and E rank second because
they are worse than the solutions B and C on both
objectives, respectively. The solution F ranks third
because two solutions (A and B) are better than the
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Figure 9. Solidity distributions of rotor 2.
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Figure 13. Total pressure distributions of rotor 2.
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Figure 16. Solidity distributions of stator 1.
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Figure 17. Solidity distributions of stator 2.
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Figure 18. Solidity distributions of stator 3.
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Figure 19. Solidity distributions of stator 4.
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Figure 20. Flow angle distributions of stator 1.
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Figure 21. Flow angle distributions of stator 2.
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Figure 22. Flow angle distributions of stator 3.
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Figure 23. Flow angle distributions of stator 4.


