実数型多目的進化的計算法

Real-Coded Multi-Objective Evolutionary Computation

大山聖(東北大院)正 大林茂(東北大工)

Akira OYAMA, Tohoku University, Sendai Shigeru OBAYASHI, Tohoku University, Sendai *Key Words :* Optimization, Evolutionary computation

1.はじめに

工学的な最適化問題は目的が複数存在する多目的最適 化問題である場合が多く、しばしばそれらは相反する要 求である。例えば航空機の翼設計は空気抵抗を減らすた めに翼厚を薄くする必要があるが、その一方で薄い翼は 翼の構造重量を増加させる。このような問題では異なる 要求に対する妥協解群(パレート最適解)が存在する。

最適化法として現在もっともよく使われている勾配法 や焼きなまし法といった単点探査法では一般に複数の目 的関数の重み付平均などのスカラー化手法を用いて多目 的最適化問題を解く必要があり、パレート最適解を一度 に得ることはできない。また、適切な重み付けは試行錯 誤的にしか見つけることができない。

一方、生物の進化のメカニズムを模倣した比較的新し い手法である進化的アルゴリズム(EA)は複数の設計 候補群を用いる多点探査法であるという特徴からパレー ト最適解を一度に得ることができ、多目的最適化問題に 最も適した最適化手法であるといえる。

多くの工学的な最適化問題は非線形かつ多峰的であり、 凹型のパレートフロントや不連続なパレートフロントを 含むこともある。このため、通常のEAでは真のパレー ト最適解を得ることができないこともあり、ロバスト性 や効率のさらなる向上が期待されている。そのためには、 異なる手法を系統立てて比較・検討を行うことができる テスト問題が必要となるが、多目的EA(MOEA)の ための系統だったテスト問題は今だ確立されていない。 よって本研究では、最適解の探索を困難にするいくつか の重要な最適化問題の特徴に着目して提案された Deb の多目的最適化のテスト関数[1]を、筆者らがこれまで用 いてきたMOEAによる計算結果とあわせて紹介する。

2. テスト関数

本研究で提示される2目的 N 変数の最小化テスト問 題は以下の式で定義される。

Minimize
$$f_1(\vec{x}) = f_1(x_1, x_2, ..., x_m)$$
 (1)

Minimize
$$f_2(\vec{x}) = g(x_{m+1}, ..., x_N)h(f_1, g)$$
 (2)

ここでm < Nである。式(1)(2)を用いることにより、単純な凸型パレートフロントではなく、凹型や不連続なパレートフロントをもったテスト問題、多峰的なテスト問題などを形成することができる。以下に有用であると思われる具体的な問題を提示する。それぞれ設計変数の数は10以上にとるのが望ましい。

$$f_1(x_1) = x_1 \tag{3}$$

$$g(x_2,...,x_N) = 1 + 10 \frac{\sum_{i=2}^N x_i}{N-1}$$
(4)

$$h(f_1,g) = 1 - \left(\frac{f_1}{g}\right)^a \tag{5}$$

すべての設計変数は[0,1]の値をとることとする。真のパ レート解は $0 \le x_1 \le 1$, $x_i = 0$ (i = 2,...,N)である。 式(5)の**a**の値を変えることにより凸型のパレートフロ ントをもつ最適化問題(例えばa = 0.5)と凹型のパレ ートフロントをもつ最適化問題(例えばa = 2)をテス トすることができる。

図1にa=2(凹型)の真のパレートフロントとMO EAで求められた最適解を示す。 f_1 が0.1以下の領域を 除いて一様にパレート最適解が得られていることがわか る。ここで用いたMOEAは実数コーディングとし、シ ェアリングを加えたパレートランキング法とベストN選 択、BLX0.5 による交叉と突然変異によって構成される。 集団の大きさと世代数はそれぞれ200と300、テス ト問題の設計変数の数Nは10とした。これらの計算条 件は以下のテスト問題の計算結果についても同様である。

不連続多目的最適化問題

$$f_1(x_1) = x_1 \tag{6}$$

$$g(x_2,...,x_N) = 1 + 10 \frac{\sum_{i=2}^{N} x_i}{N-1}$$
(7)

$$h(f_1, g) = 1 - \left(\frac{f_1}{g}\right)^{0.25} - \frac{f_1}{g} \sin(10pf_1)$$
(8)

すべての設計変数は[0,1]の値をとり、真のパレート解は $x_i = 0$ (i = 2,...,N)である。 x_1 は[0,1]の範囲の不連続 な領域に存在する。図 2 にこの問題の真のパレートフロ ントと計算により求められたパレート解を示す。この問 題でも一様にパレート解が得られた。

多峰的多目的最適化問題

$$f_1(x_1) = x_1 \tag{9}$$

$$g(x_2,...,x_N) = 1 + 10(N-1) + \sum_{i=2}^{N} (x_i^2 - 10\cos(2\mathbf{p}x_i))$$
(10)

$$h(f_1,g) = 1 - \left(\frac{f_1}{g}\right)^{0.5}$$
(11)

探査領域は $0 \le x_1 \le 1$, $-30 \le x_i \le 30$ (i = 2,...,N) とする。大域的なパレート最適解は $0 \le x_1 \le 1$, $x_i = 0$ (i = 2,...,N)である。図3に真のパレートフロントを示 す。EAにより得られたパレート解は真のパレートフロ ントからかなり離れており、図には表示されていない。

偏重多目的最適化問題

$$f_1(x_1) = 1 - \exp(-4x_1)\sin^6(5\mathbf{p}x_1)$$
(12)

$$g(x_2, \dots, x_N) = 1 + 10 \left(\frac{\sum_{i=2}^N x_i}{N-1}\right)^{0.25}$$
(13)

$$h(f_1,g) = 1 - \left(\frac{f_1}{g}\right)^2$$
 (14)

すべての設計変数は[0,1]の値をとり、真のパレート解は $0 \le x_1 \le 1$, $x_i = 0$ (i = 2,...,N)である。この問題は 図 4 に示す $x_1 \ge 0$ から 1 まで変化させたときの f_1 の分 布からわかるように、 f_1 が小さな値をとる探査領域が小 さく、 f_1 が大きな値をとる探査領域が大きいため、一様 なパレート解を得るのが困難な問題である。図 5 に真の パレートフロントと計算結果を図 4 に示す。

3.まとめ

本研究では実数型多目的進化的計算法のためのテスト 問題と筆者らが用いてきたMOEAによる計算結果を提示した。ここで示されたテスト問題では、実際の最適化 問題において最適化を困難にする凹型や不連続なパレー トフロントをもった問題、多峰的な問題などを検証する ことができる。筆者らがこれまで用いてきた手法は、複 雑なパレート面を捉えることはできるが、多峰性のある 問題では真の解に到達する能力が十分でないことが示さ れた。今後これらのテスト関数を用いて異なる遺伝的オ ペレータを比較することにより、よりロバストでより効 率的なアルゴリズムを開発する事ができるであろう。

参考文献

 Deb. K., "Construction of Test Problems for Multi-Objective Optimization," Proceedings of the Genetic and Evolutionary Computation Conference, July 13-17, 1999, pp. 164-171.

Figure 1. Concave test problem.

Figure 4. f_1 distribution of the biased test problem.

Figure 5. Biased test problem.