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Abstract. Real-coded Adaptive Range Genetic Algorithms (ARGAs) have been
applied to a practical three-dimensional shape optimization for aerodynamic
design of an aircraft wing. The real-coded ARGAs possess both advantages of
the binary-coded ARGAs and the floating-point representation to overcome the
problems of having a large search space that requires continuous sampling. The
results confirm that the real-coded ARGAs consistently find better solutions
than the conventional real-coded Genetic Algorithms do.

1  Introduction

Most of commercial aircrafts today, such as B747, B777, and A340 cruise at transonic
speeds, that is, just below the speed of sound. During the long duration of cruise,
engine thrust is applied to maintain aircraft speed against aerodynamic drag. Since a
large part of their maximum takeoff weights is occupied by the fuel weight, the
objective of an aerodynamic design optimization of a transonic wing is, in principle,
minimization of drag.

Unfortunately, drag minimization has many tradeoffs. There is a tradeoff between
drag and lift because one of the drag component called induced drag increases in
proportion to the square of the lift. A wing that achieves no induced drag would have
no lift. Another tradeoff lies between aerodynamic drag and wing structure weight.
An increase in the wing thickness allows the same bending moment to be carried with
reduced skin thickness with an accompanying reduction in weight. On the other hand,
it will lead to an increase in another component of the drag called wave drag.
Therefore, the aerodynamic design of a transonic wing is a challenging problem.

Furthermore, optimization of a transonic wing design is difficult due to the
followings. First, aerodynamic performance of a wing is very sensitive to its shape.
Very precise definition of the shape is needed and thus its definition usually requires
more than 100 design variables. Second, function evaluations are very expensive. An
aerodynamic evaluation using a high fidelity model such as the Navier-Stokes
equations usually requires 60-90 minutes of CPU time on a vector computer.



Among optimization algorithms, Gradient-based Methods (GMs) are well-known
algorithms, which probe the optimum by calculating local gradient information.
Although GMs are generally superior to other optimization algorithms in efficiency,
the optimum obtained from these methods may not be a global one, especially in the
aerodynamic optimization problem.

On the other hand, Genetic Algorithms (GAs) are known to be robust methods
modeled on the mechanism of the natural evolution. GAs have capability of finding a
global optimum because they don’t use any derivative information and they search
from multiple design points. Therefore, GAs are a promising approach to
aerodynamic optimizations.

Finding a global optimum in the continuous domain for the aerodynamic design is
challenging even for GAs. In traditional GAs, binary representation has been used for
chromosomes, which evenly discretizes a real design space. Since binary substrings
representing each parameter with a desired precision are concatenated to form a
chromosome for GAs, the resulting chromosome encoding a large number of design
variables for real-world problems would result in a string length too long. In addition,
there is discrepancy between the binary representation space and the actual problem
space. For example, two points close to each other in the real space might be far away
in the binary-represented space. It is still an open question to construct an efficient
crossover operator that suits to such a modified problem space.

A simple solution to these problems is the use of floating-point representation of
parameters as a chromosome [1]. In these real-coded GAs, a chromosome is coded as
a finite-length string of the real numbers corresponding to the design variables. The
floating-point representation is robust, accurate, and efficient because it is
conceptually closest to the real design space, and moreover, the string length reduces
to the number of design variables. It has been reported that the real-coded GAs
outperformed binary-coded GAs in many design problems [2]. However, even the
real-coded GAs would lead to premature convergence when applied to aerodynamic
shape designs with a large number of design variables.

The objective of the present work is to develop robust and efficient GAs applicable
to aerodynamic shape designs. To achieve this goal, the idea of dynamic coding, in
particular Adaptive Range GAs [3,4], is incorporated with the used of the floating-
point representation. The resulting approach is then applied to a practical wing design
problem as well as a simple test case to examine its performance.

To perform the practical wing design, the computation was processed in parallel
using Numerical Wind Tunnel (NWT) at National Aerospace Laboratory, Japan.
NWT has 166 vector processing elements at peak performance of 280 GFLOPS. The
actual computation took 108 hours with 64 PE’s.

2 Adaptive Range Genetic Algorithms

To treat a large search space with GAs more efficiently, sophisticated approaches
have been proposed, referred to as dynamic coding, which dynamically alters the
coarseness of the search space. In [5], Krishnakumar et al. presented Stochastic
Genetic Algorithms (Stochastic GAs) to solve problems with a large number of real



design parameters efficiently. Stochastic GAs have been successfully applied to Flight
Propulsion Controller designs [5] and air combat tactics optimization [6].

Adaptive Range Genetic Algorithms (ARGAs) proposed by Arakawa and
Hagiwara [3] are a quite new approach, also using dynamic coding for binary-coded
GAs to treat continuous design space. The essence of their idea is to adapt the
population toward promising regions during the optimization process, which enables
efficient and robust search in good precision while keeping the string length small.
Moreover, ARGAs eliminate a need of prior definition of search boundaries since
ARGAs distribute solution candidates according to the normal distributions of the
design variables in the present population. In [4], ARGAs have been applied to
pressure vessel designs and outperformed other optimization algorithms.

Since the ideas of the Stochastic GAs and the use of the floating point
representation are incompatible, ARGAs for floating point representation are
developed. The real-coded ARGAs are expected to possess both advantages of the
binary-coded ARGAs and the floating point representation to overcome the problems
of having a large search space that requires continuous sampling.

2.1  ARGAs for Binary Representation

When conventional binary-coded GAs are applied to real-number optimization
problems, discrete values of real design variables pi are given by evenly discretizing
prior-defined search regions for each design variable [ pi,min , pi,max ] according to the
length of the binary substring bi,l as
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where the average µi and the standard deviation σi of each design variable are
determined by the population statistics. Those values are recomputed in every
generation. Then, mapping from a binary string into a real number is given so that the
region between N’UB and N’LB in Fig. 1 is divided into equal size regions according to
the binary bit size as
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Fig. 1 Decoding for original ARGAs



where N’UB and N’LB are additional system parameters defined in [0,1]. In the ARGAs,
genes of design candidates represent relative locations in the updated range of the
design space. Therefore, the offspring are supposed to represent likely a range of an
optimal value of design variables.

Although the original ARGAs have been successfully applied to real parameter
optimizations, there is still room for improvements. The first one is how to select the
system parameters N’UB and N’LB on which robustness and efficiency of ARGAs
largely depend. The second one is the use of constant intervals even near the center of
the normal distributions. The last one is that since genes represent relative locations,
the offsprings become constantly away from the centers of the normal distributions
when the distributions are updated. Therefore, the actual population statistics does not
coincide with the updated population statistics.

2.2  ARGAs for Floating-Point Representation

In real-coded GAs, real values of design
variable are directly encoded as a real string
ri,  pi=ri  where max,min, iii prp ≤≤ .
Otherwise, sometimes normalized values of
the design variables are used as

min,min,max, )( iiiii prppp +⋅−=  (4)

where 0 ≤ri ≤1.
To employ floating-point representation for

ARGAs, the real values of design variables pi
are rewritten here by the real numbers ri defined
in (0,1) so that integral of the probability
distribution of the normal distribution from − ∞
to pni is equal to ri as
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where the average µi and the standard deviation
 σi of each design variable are calculated by
sampling the top half of the previous population
so that the present population distributes in the
hopeful search regions. Schematic view of this
coding is illustrated in Fig. 2. It should be noted
that the real-coded ARGAs resolve
drawbacks of the original ARGAs; no
need for selecting N’UB and N’LB as well as
arbitrary resolution near the average. Updating µi and σi every generation, however,
results in inconsistency between the actual and updated population statistics in the
next generation because the selection operator picks up the genes that correspond to
the promising region according to the old population statistics. To prevent this

Fig. 2 Decoding for real-coded ARGAs
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inconsistency, the present ARGAs update µ and σ every M (M>1) generations and
then the population is reinitialized. Flowchart of the present ARGA is shown in Fig.
3. --To improve robustness of the present ARGAs further, relaxation factors, ωµ  and
ωσ  are introduced to update the average and standard deviation as

)( presentsamplingpresentnew µµωµµ µ −+= (7)
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where µsampling and σsampling are determined by sampling the top half of the population.
Here, ωµ , ωσ  and M are set to 1, 0.5 and 4, respectively. They are determined by
parametric studies using some simple test functions.

In this study, design variables are encoded in a finite-length string of real numbers.
Fitness of a design candidate is determined by its rank among the population based on
its objective function value and then selection is performed by the stochastic universal
sampling [7] coupled with the elitist strategy. Ranking selection is adopted since it
maintains sufficient selection pressure throughout the optimization. One-point
crossover is always applied to real-number strings of the selected design candidates.
Structured coding [8] is incorporated for the wing design. Mutation takes place at a
probability of 0.1, and then a uniform random disturbance is added to the
corresponding gene in the amount up to 0.1.

2.3  Test Problem Using a Multi-Modal Function

To demonstrate how the real-coded ARGA works, it was applied to minimization of a
high dimensional multi-modal function:
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where ]3,3[−∈ix . This function has a global minimum at xi=0 and two local optima
near 2±=ix . In the real-coded ARGA, xi correspond to pi in eq.(5). 150 generations
were allowed with a population size of 300. Five trials were run for each GA
changing seeds for random numbers to give different initial populations. Figure 4
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compares the performances of the conventional GA and the ARGA. Figure 5 plots all
x1’s from the temporary solutions, which helps to understand why the ARGA works
better than the conventional GA. This figure shows that the ARGA maintains gene
diversity longer than the conventional GA in the initial phase and then adapts to their
search space to the local region near the optimal. While the initial gene diversity
contributes to the ARGA’ s robustness, the adaptive feature of the ARGA improves
their local search capability. The ARGA also showed its advantages over a real-coded
GA on dynamic control problem and aerodynamic airfoil shape optimization [9].

3  Aerodynamic Design of a Transonic Wing

A wide range of approximations can represent the flow physics. Among them, the
Navier-Stokes equations provide the state-of-the-aft of aerodynamic performance
evaluation for engineering purposes. Although the three-dimensional Navier-Stokes
calculation requires large computer resources to estimate wing performances within a
reasonable time, it is necessary because a flow around a wing involves significant
viscous effects, such as potential boundary-layer separations and shock
wave/boundary layer interactions in the transonic regime. Here, a three-dimensional
Reynolds-averaged Navier-Stokes solver [10] is used to guarantee an accurate model
of the flow field and to demonstrate the feasibility of the present algorithm.

The objective of the present wing design problem is maximization of lift-to-drag
ratio L/D at the transonic cruise design point, maintaining the minimum wing
thickness required for structural integrity against the bending moment due to the lift
distribution. The cruising Mach number is set to 0.8. The Reynolds number based on
the chord length at the wing root is assumed to 107.

In the present optimization, a planform shape of generic transport was selected as
the test configuration (Fig. 6). Wing profiles of design candidates are generated by the
PARSEC airfoils as briefly described in the next section. The PARSEC parameters
and the sectional angle of attack (in other words, root incident angle and twist angle)
are given at seven spanwise sections, of which spanwise locations are also treated as
design variables except for the wing root and tip locations. The PARSEC parameters
are rearranged from root to tip according to the airfoil thickness so that the resulting
wings always have maximum thickness at the wing root. The twist angle parameter is
also rearranged into numerical order from tip to root. The wing surface is then
interpolated in spanwise direction by using the second-order Spline interpolation.

In total, 87 parameters determine a wing geometry. Parameter ranges of the design
space are shown in Table 1. It should be noted that in ARGAs, user-defined design
space is used just to seed the initial population. ARGA can promote the search space
outside of the initially defined design space.

To estimate the required thickness distribution to stand the bending moment due to
the lift distribution, the wing is modeled by a thin walled box-beam as shown in Fig.
6. The constraint for wing thickness t1 is specified by using the minimum thickness
tmin calculated from the wing box sustaining the aerodynamic bending moment M as,
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where following assumptions are made: the thickness of the skin panels are 2.5[cm]
and its ultimate normal stress σultimate is 39[ksi]. The length of the chord at wing root c
and maximum wingspan b/2 are 10[m] and 18.8[m], respectively (for the derivation of
Eq. (10), see [11] for example).

t2

t1

c

croot

b/2

Fig. 6 Wing geometry definition. Planform shape is frozen during the optimization. Wing box is
used to estimate its structural strength. PARSEC parameters are the design variables for airfoil
shapes defined at seven spanwise sections

Table 1 Parameter ranges of the design space. PARSEC is determied by leading-edge radius
(rLE), upper and lower crest locations including curvatures (XUP, ZUP, ZXXUP XLO, ZLO, ZXXLO),
trailing-edge ordinate (ZTE) and thickness (∆ZTE) and direction and wedge angles (αTE, βTE)

parameters rLE ZTE αTE βTE XUP ZUP ZXXUP XLO ZLO ZXXLO twist
angle

Upper
bound

0.030 0.01 -3.0 8.0 0.7 0.18 0.0 0.6 0.02 0.9 7
deg

Lower
bound

0.002 -0.01 -13.0 4.0 0.3 0.08 -0.3 0.2 -0.04 0.3 -1
deg

3.1  PARSEC Airfoils

An airfoil family “PARSEC” has been recently proposed to parameterize an airfoil
shape [12]. A remarkable point is that this technique has been developed aiming to
control important aerodynamic features effectively by selecting the design parameters
based on the knowledge of transonic flows around an airfoil.

Similar to 4-digit NACA series airfoils, the PARSEC parameterizes upper and
lower airfoil surfaces using polynomials in coordinates X, Z as,
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where an are real coefficients. Instead of taking these coefficients as design
parameters, the PARSEC airfoils are defined by basic geometric parameters: leading-
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edge radius (rLE), upper and lower crest locations including curvatures (XUP, ZUP,
ZXXUP XLO, ZLO, ZXXLO), trailing-edge ordinate (ZTE), thickness (∆ZTE) and direction
and wedge angles (αTE, βTE) as shown in Fig. 6. These parameters can be expressed
by the original coefficients an by solving simple simultaneous equations. Eleven
design parameters are required for the PARSEC airfoils to define an airfoil shape in
total. In the present case, the trailing-edge thickness is frozen to 0. Therefore, ten
design variables are used to give each spanwise section of the wing.

3.2  Optimization Using Real-Coded ARGA

Because the objective function distribution of the present optimization is likely to be
more complex than the above test function minimization, the relaxation factor ωσ is
now set to 0.3. The structured coding coupled with one-point crossover proposed in
[13] is also incorporated. The present ARGA adopts the elitist strategy where the best
and the second best individuals in each generation are transferred into the next
generation without any crossover or mutation. The parental selection consists of the
stochastic universal sampling and the ranking method using Michalewicz’s nonlinear
function. Mutation takes place at a probability of 10% and then adds a random
disturbance to the corresponding gene in the amount up to ±10% of each parameter
range in Table 1. The population size is kept at 64 and the maximum number of
generations is set to 65 (based on the CPU time allowed). The initial population is
generated randomly over the entire design space.

The main concern related to the use of GAs coupled with a three-dimensional
Navier-Stokes solver for aerodynamic designs is the computational cost required. In
the present case, each CFD evaluation takes about 100 min. of CPU time even on a
vector computer. Because the present optimization evaluates 64 x 65 = 4160 design
candidates, sequential evolutions would take almost 7000 h (more than nine months!).

Fortunately, parallel vector computers are now available at several institutions and
universities. In addition, GAs are intrinsically parallel algorithms and can be easily
parallelized. One of such computers is Numerical Wind Tunnel (NWT) located at
National Aerospace Laboratory in Japan. NWT is a MIMD parallel computer with
166 vector-processing elements (PEs) and its total peak performance and the total
main memory capacity are about 280 GFLOPS and 45GB, respectively. For more
detail, see [14]. In the present optimization, evaluation process at each generation was
parallelized using the master-slave concept. This made the corresponding turnaround
time almost 1/64 because the CPU time used for GA operators are negligible.

To handle the structural constraint with the single-objective GA, the constrained
optimization problem was transformed into an unconstrained problem as
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where t and tmin are thickness and minimum thickness at the span station of the
maximum local stress. The exponential term penalizes the infeasible solutions by
reducing the fitness function value. Because some design candidates can have
negative L/D, the summation of 100 and L/D is used.



3.3  Results

The optimization history is shown in Fig. 7 in terms of L/D. During the initial phase
of the optimization, some members had a strong shock wave or failed to satisfy the
structural constraint. However, they were weeded out from the population because of
the resultant penalties to the fitness. The final design has
L/D of 18.91 (CL = 0.26213 and CD = 0.01386)
satisfying the given structural constraint. Turnaround
time of this optimization was about 108 h on NWT.

To examine whether the present optimal design is
close to a global optimum, we have checked it against
analytically and empirically established design
guidelines. In aerodynamics, spanwise lift distribution
should be elliptic to minimize the induced drag.
However, the structural constraint leads to a tradeoff
between induced drag and wave drag. This enforces the
spanwise lift distribution to be linear rather than elliptic.
The present solution has a linear distribution. To produce this distribution, a wing is
usually twisted in about five degrees. The present wing is twisted in six degrees.

Figure 8 shows the designed airfoil sections and the corresponding pressure
distributions at the 0, 33, and 66% spanwise locations. In the pressure distributions,
neither any strong shock wave nor any flow separation is found. This ensures that the
present wing has very little wave drag and pressure drag. At 33 and 66% spanwise
locations, the rooftop, front-loading and rear loading patterns are observed, which are
typical for the supercritical airfoils [15] used for advanced transport today. The
corresponding airfoil shapes are indeed similar to supercritical airfoils. Overall, these
detailed observations of the design confirm that the present design is very close to a
global optimum expected by the present knowledge in aerodynamics.

4  Summary

To develop GAs applicable to practical aerodynamic shape designs, the real-coded
ARGAs have been developed by incorporating the idea of the binary-coded ARGAs
with the use of the floating-point representation. The real-coded ARGA has been
applied to a practical aerodynamic design optimization of a transonic wing shape for
generic transport as well as a simple test case. The test case result confirms the

Fig. 7 Optimization history
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present GA outperforms the conventional GA.
Aerodynamic optimization was performed with 87 real-number design variables by

using the Navier-Stokes code. The realistic structural constraint was imposed. The
resulting wing appears very similar to advanced wing designs based on supercritical
airfoils. The straight span load distribution of the resulting design represents a
compromise between minimizations of induced drag and wave drag. The designed
wing also has a fully attached flow and the allowable minimum thickness so that
pressure drag and wave drag are minimized under the present structural constraint.
These results confirm the feasibility of the present approach for future applications.
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