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ABSTRACT
Design optimization method for turbopumps of
cryogenic rocket engines has been developed.
Multiobjective Evolutionary Algorithm is used for
multiobjective pump design optimizations.
Performances of design candidates are evaluated by
using the meanline pump flow modeling method based
on the Euler turbine equation coupled with empirical
correlations for rotor efficiency.
To demonstrate the feasibility of the present approach,
single stage centrifugal pump design and multistage
pump design optimizations are presented. In both
cases, present method obtains very reasonable Pareto-
optimal solutions that include some designs
outperforming the original design in total head as well
as input power by 1%. Detailed observation of the
design results also reveals some important design
policies in turbopump design of cryogenic rocket
engines. These results ensure the feasibility of EA-
based design optimization method in this field.

INTRODUCTION
While budget for space development programs has
drastically shrunk in most countries, recent and future
space missions increasingly demand high performance
and reliability for rocket engine systems and their
components, such as turbopumps. Though the progress
in computational fluid dynamics (CFD) methods and

development of powerful computational facilities have
contributed to reduce necessary cost and time required
to develop the advanced turbopump designs, the design
process still largely depends on experienced designers.
Therefore, numerical design methods coupled with
CFD capable of efficiently developing advanced
turbopump designs can greatly reduce such
dependency.
Among numerical optimization algorithms, gradient-
based methods are long-standing and most widely used
approaches1"3. These methods use gradient of an
objective function with respect to changes in design
variables to calculate a search direction using steepest
descent, conjugate gradient, quasi Newton techniques,
or adjoint formulations. The solution obtained by these
methods will be a global optimum, only if the objective
and constraints are differentiable and convex4.
Unfortunately, distribution of an objective function of
real-world design problems is usually multimodal and
one could only hope for a local optimum neighboring
the initial design point. Therefore, to determine the
global optimum, one must optimize from a number of
initial points and check for consistency in the optima
obtained. In this sense, the gradient-based methods are
not robust.
Evolutionary Algorithms (EAs, for example, see [5])
are emergent design optimization algorithms modeled
on mechanism of the natural evolution. EAs search
from multiple points, instead of moving from a single
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point. In addition, they require no derivatives or
gradients of the objective function. These features lead
to robustness and simplicity in coupling any evaluation
codes. Parallel efficiency also becomes very high by
using a simple master-slave concept for function
evaluations, if such evaluations consume most of CPU
time. Design optimization using CFD is a typical case.
Application of EAs to multiobjective design problems
is also straightforward because EAs maintain a
population of design candidates in parallel. Due to
these advantages, EAs are unique and attractive
approach to real-world design optimization problems.
Recently, EAs have been successfully applied to
aerospace design optimization problems5"9.
The objective of the present study is to develop and
demonstrate a design optimization method for
turbopumps of cryogenic rocket engines.
Multiobjective Evolutionary Algorithm (MOEA) will
be used for multiobjective optimization of pump
designs. Performances of design candidates will be
evaluated by using the meanline pump flow modeling
method based on the Euler turbine equation coupled
with empirical correlations for rotor efficiency. Present
approach will be applied to centrifugal and multistage
turbopump design optimization problems.

EVOLUTIONARY ALGORITHMS
EAs mimic mechanism of natural evolution, where a
biological population evolves over generations to adapt
to an environment by selection according to fitness,
recombination and mutation of genes (Fig.l). When
EAs are applied to optimization problems, individual,
fitness, and genes usually correspond to a design
candidate, an objective function value, and design
variables, respectively. One of the key features of EAs
is that they search from multiple points in the design
space, instead of moving from a single point like
gradient-based methods do. Furthermore, these
methods work on function evaluations alone and do not
require derivatives or gradients of the objective
function. These features lead to the following
advantages:
1) Robustness: EAs have capability of finding a

global optimum, because they don't use function
gradients that direct the search toward an exact
local optimum. In addition, EAs have capability to
handle any design problems that may involve non-
differentiable objective function and/or a mix of
continuous, discrete, and integer design
parameters.

2) Capability of sampling various Pareto-optimal
solutions in parallel: Real-world design
optimization problems typically involve multiple
and often competing objectives. Solution to such
problem is not a unique optimal solution, but a set
of compromised solutions, largely known as

Pareto-optimal solutions. Each of those solutions is
optimal in the sense that no improvement can be
achieved in one objective component that does not
lead to degradation in at least one of the remaining
components. Therefore, primary goal of a
multiobjective optimization problem is, unlike that
of a single objective optimization, to find various
Pareto-optimal solutions to show the precise
tradeoff information among the completing
objectives. By maintaining a population of
solutions and introducing the concept of Pareto-
optimality, EAs can uniformly sample various
Pareto-optimal solutions in parallel.

3) Suitability to parallel computing: Since EAs are
population-based search algorithms, all design
candidates in each generation can be evaluated in
parallel by using the simple master-slave concept.
Parallel efficiency is also very high, if objective
function evaluations consume most of CPU time.

4) Simplicity in coupling evaluation codes: As these
methods use only objective function values of
design candidates, EAs do not need substantial
modification or sophisticated interface to
evaluation codes. If an all-out re-coding were
required to every optimization problem like the
adjoint methods, extensive validation of the new
code would be necessary every time. EAs can save
such troubles.

The present MOEA uses floating-point representation.
Fonseca's Pareto-based ranking method is used for
fitness assignment where an individual's rank
corresponds to the number of individuals in the current
population that are better than the corresponding
individual in every objective function. To maintain
diversity in the population, a standard sharing
function10 is incorporated. As the elitism, the best-N
selection11 is incorporated, where the best N
individuals are selected for the next generation among
N parents and N children based on Pareto-optimality5

so that Pareto-optimal solutions will be kept once they
are formed. Parents are selected from the best N
individuals randomly and blended crossover (BLX-
0.5) is applied to them to generate new design
candidates. Since the strong elitism is used, high
mutation rate of 0.2 is applied and a random
disturbance is added to the parameter in the amount up
to ± 20% of the design space. Population size and
maximum number of generations are set to 100 and 90
for the centrifugal pump design, 100 and 120 for the
multistage pump design. Unbiased initial population is
generated by randomly spreading solutions over the
entire design space in consideration.

PUMP PERFORMANCE EVALUATION
Total head and required input power of pump design
candidates are evaluated by using one-dimensional
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meanline pump flow modeling method, which provides
a fast capability for modeling turbopumps within
rocket engines. The components of the inlet and exit
fluid velocity triangles are calculated at the hub, mean
and tip locations along the rotor blades. The meridional
velocity of the fluid at the rotor leading edge root-
mean-square diameter CMI [ft/sec] is defined by
equation (1).

144m
CMI = —— — (1)PA

where
ra: Mass flow [Ibs/sec]
pi\ Fluid density at leading edge [lbs/ft3]
Aj: Flow area at leading edge [inch2]

Flow area is calculated from the input flow path
dimensions.

A = ̂ B(RM+Rap)-block\ (2)
where

A: Boundary layer blockage factor
B: Blade span from hub to tip [inch]
Rhub: Radial distance from pump centerline

at hub [inch]
Rtip\ Radial distance from pump centerline

at tip [inch]
The metal blockage of the rotor block is calculated by
eq. (3).

7r 7 thk-B-Zblock = ————— (3)
sinp

where
thk: Normal blade thickness [inch]
Z: Blade number
/?: Relative angle from tangential [degree]

The tangential component of velocity entering the rotor
is calculated in terms of the swirl angle of the flow a/
by equation (4).

Cul = Cm/tan(al) (4)
The meridional and tangential components of absolute
fluid velocity at the rotor trailing edge are calculated by
equations (5) and (6).

144m
(5)

of the fluid relative velocity WU2 are given by equations
(7) and (8), respectively.

P2A2

(6)
where

p2: Fluid density at trailing edge [lbs/ft3]
A2: Flow area at trailing edge [inch2]
U2: Blade tangential velocity at trailing edge

[ft/sec]
Wu2> Tangential component of relative fluid velocity

at trailing edge [ft/sec]
Flow area at trailing edge is calculated by eq. (2). The
blade tangential velocity U and tangential component

720

where
R: Radial distance from pump centerline [inch]
N: Shaft rotative speed [rpm]
f}2: Relative angle from tangential at trailing edge

[degree]
The slip factor a is defined by

„ slip
(7=1- —*- (9)

U2
The slip is the difference between the theoretical and
absolute fluid tangential velocities. For centrifugal
impellers, Pfleiderer correlation to geometry13 is used
to calculate the slip factor a A default slip factor of
0.95 is used for inducers.
The head rise through the rotor is calculated iteratively
from the Euler turbine equation coupled with empirical
correlations for rotor efficiency

(10)
&c

where
H2: Head rise through the rotor [ft]
rjhyd- Rotor hydraulic efficiency
gc: Gravitational constant, 32.174[lbm-ft/lbf-sec2]

The rotor hydraulic efficiency is obtained from
empirical correlations to rotor-specific speed14. The
total pressure and static pressure at the rotor exit are
estimated from the rotor head rise by equations (11)
and (12).

144

PS2=P,2-
C2

2-P2

(11)

(12)
2-144-gc

where
Pti\ Total pressure at the leading edge [psia]
Pt2: Total pressure at the trailing edge [psia]
Pi_2: Average density of the fluid from the leading

edge to the trailing edge [lbs/ft3]
Ps2: Static pressure at the trailing edge [psia]

Fluid absolute velocity at trailing edge C2 [ft/sec] is
defined by

Total pressure at the discharge of the last stage Pt4
[psia] is given by the following equation

Pt4=Pt2-C02_4-(Pt2-Ps2) (14)
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where design point total pressure loss coefficient of the
diffusion system is assumed to be known and is input
in terms of a normalized loss coefficient 0)2.4. The total
head rise through pump is calculated by

H4 =
A-4

(15)

where
H4: Total head rise through pump[ft]
Pt4\ Total pressure at the pump exit [psia]
Pi_4\ Average density of the fluid from the inlet

to the discharge [lbs/ft3]
The input power required to drive the rotor is
calculated from the head rise through the rotor, mass
flow, rotor hydraulic efficiency, mechanical efficiency,
volumetric efficiency and disk pumping loss as

input -

where
input: Input power [hp]

1
'disk

I mech
(16)

ijrnech- Mechanical efficiency
rjvoi : Volumetric efficiency
PLdisk: Disk Pumping loss [hp]

The mechanical efficiency is assumed to be 0.98 and
the volumetric efficiency is based on internal leakages
and is expressed as the ratio of leakage to the inlet
flow. The disk pumping loss is calculated from
empirical correlations to geometry, fluid density at
rotor trailing edge, and the shaft rotative speed14.
During the calculation, local static pressure at the rotor
tip is compared to the local vapor pressure to check for
the cavitation inception point.
To estimate off-design total head and required input
power, the empirically derived variation of slip factor
and rotor efficiency as a function of flow-speed ratio F
is used. Correction factor is also applied to the total
pressure loss coefficient of the diffusion system as a
function of loading parameter L.

design
- = 1.534988-0.6681688- F+ 0.011412-F2 +0.0571508- F3

I hyd, design

CO

= 0.86387 + 0.3096- F -0.14086- F2 -0.029265- F3

= 1.8151-1.83527 -L + 0.8798-Z/+0.18765-Lj

(O

(17)

(18)

(19)
design

The loading parameter is defined in terms of the
velocities at the vaneless diffuser exit and the velocity
at the diffusion system throat.

L =

where

Cthroat
-i 2
'£73

(20)

Cthroai- Fluid absolute velocity at the diffusion system
throat [ft/sec]

CUB' Tangential component of fluid absolute velocity
at vaneless diffuser exit [ft/sec]

CMS'- Meridional component of fluid absolute
velocity at vaneless diffuser exit [ft/sec]

The velocity at the diffusion system throat is defined
by the equations (21) and (22).

_144m
CMS — ———

R2
(22)

where the pressure loss coefficient at the diffuser exit
0)2.3 is assumed to be 0.1. Fluid velocity at the throat is

given by the equation (23).
144m

Cthroat ~"
/^Athroat

(23)

CENTRIFUGAL PUMP DESIGN
First, redesign of a single-stage centrifugal pump, M-l
oxygen scaled tester is demonstrated. Objectives of the
present design problem are maximization of total head
and minimization of input power at a design point.
These objectives are competing and therefore the
solution to this optimization problem is Pareto-optimal
solutions.
The design point is shaft rotative speed of
5,416.7[rpm], total temperature of the fluid entering the
pump of 545 [Rankin], total pressure of the fluid
entering the pump of 50.0 [psia], and mass flow into
the pump of 188.7 [Ibm/sec].
Design parameters are rotor leading edge tip radius
(Rtipi), rotor trailing edge radius (R2), volute tongue
radius (R3), blade span at trailing edge (B2), blade span
at volute tongue (83), axial length of the blade at the
root-mean-square diameter (S), number of blades (Zn),
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blade thickness (thk), blade trailing edge angle at the
hub, root-mean-square radius, and tip (/3hub , [}mid, /3tip)
as shown in Fig. 2. Table 1 presents present design
spaces.
Total head and input power of Pareto-optimal designs,
original design, and all other design candidates are
illustrated in Fig. 3. Designs that have cavitation are
eliminated from the figure. Present Pareto-optimal
solutions successfully displays tradeoff information
between maximization of the total head and
minimization of the input power. Such tradeoff
information is very helpful to a higher-level decision-
maker in selecting a design with other considerations.
Among the Pareto-optimal solutions, some designs
outperform the original design in the total head as well
as the input power by 1%.
Figure 4 compares overall performance maps of the
original design, the highest total head design, the
lowest input power design, and a compromised design
that overcomes the original design in both objectives.
The compromised design improved the exit pressure in
all off-design conditions. The design parameters of
these designs are shown in Table 2.
The absolute flow velocity at rotor exit hub is show in
Fig. 5. This figure indicates the optimum designs have
small exit flow velocity, which contributes to minimize
the total pressure loss in the diffusion system. By
minimizing the total pressure loss in the diffusion
system, designs can improve their total head rise. To
minimize the exit flow velocity, the optimum designs
have small slip factor values, i.e., large slip than others.
Actually, all three optimum designs in Table 2 have
small axial length, while the high head design and the
compromised design maximize R2 to increase slip due
to the inertial effect (Low input design minimize R2 to
minimize input power). The low input design and the
compromised design also minimize their blade angle at
hub and tip to reduce absolute fluid velocity at rotor
exit (the high head design maximize blade trailing edge
angles to improve its total head). However, it is known
that non-uniform radial velocity around the periphery
of the impeller due to large slip degrades its head rise.
Therefore, this effect should be counted in the future
study.
Figure 6 shows the total pressure loss coefficient of the
diffusion system of the designs. Pareto-optimal
solutions successfully minimize it to increase their total
head rise. According to these detailed observations of
the results, present MOEA obtained reasonable Pareto-
optimal solutions, which ensure the feasibility of the
present design optimization approach in rocket engine
pump designs.

MULTISTAGE PUMP DESIGN
Next, present design optimization method is applied to
the redesign of RL10A-3-3A liquid oxygen pump

consisting of one inducer and a single centrifugal
impeller, followed by a vaneless diffuser and conical
exit volute. The objectives are maximization of total
head and minimization of input power at the design
point, which is shaft rotative speed of 12,900[rpm],
total temperature of the fluid entering the pump of 175
[Rankin], total pressure of the fluid entering the pump
of 40.0 [psia], and mass flow into the pump of 40.0
[Ibm/sec]. Design parameters and the corresponding
parameter ranges are shown in Fig. 7 and Table 3,
respectively.
Figure 8 shows total head and input power of Pareto-
optimal designs, original design, and all other design
candidates that have no cavitation. Though this design
optimization problem involves two stages and a large
number of design parameters, present MOEA finds
reasonable Pareto-optimal solutions including some
designs that improve both total head and input power
by as much as 1%.
Figure 9 shows overall performance maps of the
original design and optimized designs. The
compromised design improved the exit pressure in all
off-design conditions. The design parameters of these
designs are shown in Table 4.
Figures 10 and 11 illustrate the head rise and the
required input power of the first and the second stages.
Because the exit of the first stage connects with the
inlet of the second stage directly, the relation between
the head rise and input power became linear. The
optimum designs increased their head rise through the
first stage because the slope of the curve consisted of
Pareto-optimal solutions in Fig. 11 is steeper than that
of the line in Fig. 10. To increase the head rise through
the first stage, the highest head design and the
compromised design increase Rtip, fahub, ($2™, and /32tip.
Another interesting thing is that the second stages of
the Pareto-optimal designs are not optimal by
themselves, especially in the high head region. This is
due to the interaction between the first and the second
stages, which makes a multistage pump design very
difficult.
Figure 12 shows fluid velocity at rotor exit hub. The
Pareto-optimal designs have small fluid velocity at exit
like the single stage pump design. However, the
optimum designs that have the total head of 950-1200
inches do not minimize their total head. This is
probably due to complicated interaction between the
first and second stages.
Figure 13 is the total pressure loss coefficient of the
designs. This figure is also interesting because the
optimal designs in low total head region minimize their
total pressure loss coefficient but the optimal designs in
the high total head region maximize it. More work is
necessary to understand the multistage pump designs.
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SUMMARY
In the present study, a design optimization method for
turbopumps of cryogenic rocket engines has been
developed. Multiobjective Evolutionary Algorithm is
used for the multiobjective optimization of pump
designs. Performances of design candidates are
evaluated by using the meanline pump flow modeling
method based on the Euler turbine equation coupled
with empirical correlations for rotor efficiency.
To demonstrate the feasibility of the present approach,
single stage centrifugal pump design and multistage
pump design optimizations are presented. In both
cases, present method obtains reasonable Pareto-
optimal solutions that include some designs
outperforming the original design in total head as well
as input power by 1%. Detailed observation of the
design results also reveals some important design
policies in turbopump design of cryogenic rocket
engines. These results ensure the feasibility of EA-
based design optimization method in this field.
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Zn: number of blades

Figure 2. Design parameters of the centrifugal pump
design problem.

Table 1. Design parameter ranges of the centrifugal
pump design problem.

design variables

Upper boundary

Lower boundary

design variables

Upper boundary

Lower boundary

RitiP
[inch]

4.00

3.40

*2
[inch]

5. 60

5.00

*3
[inch]

6.20

5.60

B2
[inch]

0.85

0.70

B3
[inch]

1.00

0.85

Ptn*
[degs.]

25.0

45.0

Pirns
[degs.]

25.0

45.0

P*
[degs.]

25.0

45.0

thk
[inch]

0.03

0.10

Zn

6

18

S
[inch]

4.30

3.70

High head design

all cte&igii caiictidatis 1
Pareto-optimal designs

350600 700 800 900 1000 1100
Head [inch]

Figure 3. Objective function values of the centrifugal
pump designs.

• low input design
-compromise

—— high head design
—— original design

500 1000 1500
FLOW[GPM]

Figure 4. Pump overall performance map.

2000

Table 2. Pareto-optimal designs of the centrifugal
pump design problem.

design variables

High head design

Low input design

Compromised design

Original design

Ritip
[inch]

3.50

3.71

3.92

3.66

*2
[inch]

5.60

5.00

5.59

5.34

RS
[inch]

6.05

6.08

5.63

5.91

B2
[inch]

0.846

0.701

0.730

0.814

B3
[inch]

0.871

0.859

0.878

0.908

S
[inch]

3.74

3.74

3.76

4.00

1200

design variables

High head design

Low input design

Compromised design

Original design

P hub
[degs.]

44.9

25.3

26.7

35.0

Pm[degs.]

36.0

33.2

37.2

35.0

P+
[degs.]

44.6

26 J

26.4

35.0

thk
[inch]

0. 100

0.065
0.042
0.050

zn

18

6

7

12
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." ; all. design earidielates High head design
• Pareto-optimal designs I

80
Low input design

800 900 100011001200130014001500
Head [inch]

Figure 8. Objective function values of the multistage
pump designs.

Table 4. Pareto-optimal designs of the multistage
pump design problem.

<lststage>
design variables

High head design

Low input design

Compromised design

Original design

**
[inch]

7.77

7.77

7.77

7.73

^2hub

[inch]

0.577

0.525

0.574

0.480

P**
[degs.]

49.9

42.9

48.3

43.0

P*.
[degs.]

38.5

37.3

40.0

27.3

PzP
[degs.]

34.9

28.0

33.4

21.6

thk2

[inch]

0.0788

0.0378

0.0520

0.0400

<2nd staqe>
design variables

High head design

Low input design

Compromised design

Original design

RS
[inch]

2.20

2.00

2.16
2.10

(R4-R3)
[inch]

0.7350

0.0545

0.0605

0.0950

B3
[inch]

0.340
0.152
0.333

0.251

B4
[inch]

0.301
0.393
0.370

0.400

thk3
[inch]

0.0311
0.0798
0.0439

0.0300

S
[inch]

0.855

0.804

0.812

0.878

Zn3

16
8

9
12

P3
[degs.]

87.4

64.4

77.8

90.0

—— original design
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Figure 9. Pump overall performance map.
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Figure 10. First stage performances of the multistage
pump designs.
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Figure 11. Second stage performances of the
multistage pump designs.
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Figure 13. Total pressure loss coefficient of the
multistage pump designs.
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Figure 12. Flow velocity at second stage exit hub.
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