
1

Chapter 1
Introduction

1.1 Background
The aircraft industry, like others, is increasingly exposed to considerable commercial

pressures: Boeing Company and Airbus Industrie are struggling for supremacy on the large-size civil
airliner (seating more than 100 passengers) market, while many companies, such as Bombardier,
Embraer, Dornier, Dasa, are fighting for a larger share of the expanding regional jet aircraft market.
Since the success of such commercial products depends on cost and timeliness as well as quality, the
design process is being reengineered to save cost and time scales.

With advances in Computational Fluid Dynamics (CFD) and computer hardware, CFD has
become an integral part of the aircraft design process. CFD has contributed to cut aerodynamic design
cost and time scales by reducing the number of required wind tunnel tests. However, it is just an
instrument for estimating aerodynamic performance of a given aircraft configuration. On the whole,
the basis of the design process is trial and error, and the success of the final design depends on the
knowledge and intuition of the designer. CFD technology will be able to display its ability to the full
when it is coupled with numerical optimization methods by displacing any human interactions in the
design procedure.

Yet, despite the fact that numerical optimization methods have been successfully used for a
countless number of design problems, an application of numerical optimization to aerodynamic design
still remains as a formidable challenge because of the following difficulties:
1) Objective function landscape of an aerodynamic optimization is often multimodal and nonlinear:
there are many local optima, plateaus, or ridges even in a simplified problem [1]. This is because the
flow field is governed by a system of nonlinear partial differential equations expressing the
conservation of mass, momentum, and energy.
2) Function evaluations using a CFD code, especially a three-dimensional Euler or Navier-Stokes
code, are very expensive. An aerodynamic evaluation of a simple wing with a Navier-Stokes solver,
for instance, can take more than an hour of CPU time even on a vector computer.
Aerodynamic design problems with these properties require a numerical optimization tool to be very
robust and efficient as well.

The application of numerical optimization methods coupled with CFD to transonic
aerodynamic shape designs was pioneered by Hicks et al., where airfoil shapes were designed using a
gradient-based method coupled with a potential flow solver [2]. Since then, the gradient-based
methods have been widely used for wing design [3], scramjet nozzle design [4], supersonic wing-body
design [5], and more complex aircraft configurations [6,7]. These methods use the gradient of an
objective function with respect to changes in the design variables to calculate a search direction using
the finite difference methods [8] or adjoint formulations [9]. These methods are efficient in searching
optimums. Not only that, the optimum obtained from these methods will be a global one, if the
objective and constraints are differentiable and convex (Kuhn-Tucker condition). Distribution of an
objective function of an aerodynamic design problem, however, is usually multimodal, and thus, one
could only hope for a local optimum neighboring the initial design point by using the gradient-based
method. Therefore, to find a global optimum, one must start the optimization process repeatedly from
a number of initial points and check for consistency of the optima obtained. In this sense, the gradient-
based methods are neither efficient nor robust for design automation.

Evolutionary Algorithms (EAs) are emergent optimization algorithms mimicking
mechanism of the natural evolution, where a biological population evolves over generations to adapt
to an environment by selection, crossover and mutation. When EAs are applied to optimization
problems, fitness, individual and genes usually correspond to an objective function value, a design
candidate, and design variables, respectively. One of the key features of EAs is that they search from
multiple points in the design space, instead of moving from a single point like gradient-based methods
do. Furthermore, these methods work on function evaluations alone and do not require derivatives or

2

gradients of the objective function. These features lead to the following advantages:
1) Robustness: EAs have capability of finding a global optimum, because they don’t use function
gradients that direct the search toward an exact local optimum. In addition, EAs have capability to
handle any design problems that may involve non-differentiable objective function and/or a mix of
continuous, discrete, and integer design parameters.
2) Suitability to parallel computing: Since EAs are population-based search algorithms, all design
candidates in each generation can be evaluated in parallel by using the simple master-slave concept.
Parallel efficiency is also very high, if objective function evaluations consume most of CPU time.
Aerodynamic optimization using CFD is a typical case.
3) Simplicity in coupling CFD codes: As these methods use only objective function values of design
candidates, EAs do not need substantial modification or sophisticated interface to the CFD code. If an
all-out re-coding were required to every optimization problem, like the adjoint methods, extensive
validation of the new code would be necessary every time. EAs can save such troubles.

Owing to the above advantages over the analytical methods, EAs have become increasingly
popular in a broad class of design problems (for example, see [10]). EAs have been also successfully
applied to aeronautical design problems including conceptual and preliminary design of aircraft
[11,12], preliminary design of turbines [13]. Table 1.1 outlines some of aerodynamic shape
optimization problems where EAs coupled with CFD have been successfully applied.

Table 1.1 Aerodynamic design problems solved by EAs and CFD
Researchers Year Application area
Quagliarella, D. and Cioppa,
A. D.

1994 Airfoil shape design using a potential
solver [14]

Yamamoto, K. and Inoue, O. 1995 Airfoil shape design using a Navier-
Stokes solver [15]

Cao, H. V. and Blom, G. A. 1996 Multi-element airfoil shape design using a
Navier-Stokes solver [16]

Obayashi, S. and Oyama, A. 1996 Subsonic wing shape design using a
Navier-Stokes solver [17]

The previous applications of EAs, however, are restricted to more or less simplified
problems involving not more than 10-30 design parameters. In contrast to that, in real-world design
problems, a large number of design parameters must be handled – for example, a wing shape for a
generic transonic aircraft usually parameterized by more than a hundred of design parameters. Since
such problem has highly multidimensional search space and extremely complicated objective function
distribution, standard EAs would fail to find a globally optimum. Unfortunately, an EA capable to find
a global optimum in such a large-scale design problem has not been developed yet.

1.2 Thesis Objectives
The objective of this research is to develop a new, robust, and efficient numerical design

method applicable to real-world aerodynamic design problems. To achieve this goal, the following
three key items will be investigated:

Goal 1: Improvement of EA search ability through the adaptive search range mechanism.
In the standard EAs, the upper and lower limits of the search regions should be given by the designer
in advance to the optimization process. In general, a needlessly large search region is used in fear of
missing the global optimum outside of the search region. Therefore, if the search region is able to
adapted toward a promising area during the optimization process, the performance of EAs will be
enhanced greatly.

Goal 2: Improvement of EAs by using the structured coding based on epistasis analysis.
When EAs are used to solve an engineering optimization problem, complexity in the objective

3

function distribution appears as interactions among design parameters, which are often referred as
epistasis, corresponding to the term used in biology. Therefore, if the epistatic interaction structures of
the design parameters are identified in advance, the robustness and efficiency of EAs will be improved
by properly defining the coding structure of the design parameters.

Goal 3: Transonic wing design optimization based on EAs
To ensure the ability of the present EA in large-scale aerodynamic design optimizations, an
aerodynamic design optimization of a transonic wing shape for generic transport aircraft will be
demonstrated. Aerodynamic performances of the design candidates will be evaluated by using the
three-dimensional compressive Navier-Stokes equations to guarantee an accurate model of the flow
field. Structural constraint was introduced to avoid an apparent solution of zero thickness wing for low
drag in high speeds.

Goal 4: Supersonic wing design optimization based on EAs
To examine the ability of the EAs in supersonic wing design optimizations, an EA will be applied to
an aerodynamic wing shape design for a supersonic transport.

1.3 Evolutionary Algorithms

1.3.1 What’s Evolutionary Algorithm?
Evolution is a phenomenon of adapting to the environment and passing genes to next

generations. In On the Origin of Species by Means of Natural Selection [18], Charles Darwin did not
know about the underlying genetics, but he identified three basic principles driving natural evolution;
reproduction, natural selection, and diversity of individuals, maintained by variations from one to the
next generation. These features of natural evolution have found entrance to a broad class of
evolutionary algorithms that mimic biological evolution and natural selections. It was 1960s that
American and European researchers gave birth to stochastic search methods inspired by Darwinian
evolution theory, all independently of each other: they are Evolutionary Programming (EP),
Evolutionary Strategies (ESs), and Genetic Algorithms (GAs).

One of them, EP goes back to the work of L. J. Fogel [19]. He initially studied this method
to develop the artificial intelligence and succeeded in evolving a mathematical automaton that predicts
a binary time series. Later, in the middle of 80’s, his son David Fogel further developed it to solve
more general tasks including prediction problems, optimization, and machine learning [20]. Since this
approach modeled organic evolution at the level of evolving species, the original EP does not rely on
any kind of recombination. In general, each parent generates an offspring by the Gaussian mutation
and better individuals among parents and offspring are selected as parents of the next generation. EP
has been applied successfully for the optimization of the real-valued functions [21,22] and other
practical problems [23]. For more details see [24].

ESs were developed by Rechenberg and Schwefel at the Technical University of Berlin and
have been extensively studied in Europe [25-28]. While EP has derived for pure scientific interest,
motivation of this study is, from the beginning, to solve engineering design problems: Rechenberg and
Schwefel developed ESs in order to conduct successive wing tunnel experiments for aerodynamic
shape optimization. Their important features are threefold:
1. ESs use real-coding of design parameters since they model the organic evolution at the level of

individual’s phenotypes.
2. ESs depend on deterministic selection and mutation for its evolution.
3. ESs use strategic parameters such as on-line self-adaptation of mutability parameters.
Some examples of early applications of ESs are: optimal dimensioning of the core of a fast sodium-
type breeder reactor [29], shape optimization of vaulted reinforced concrete shells [30], arm prosthesis
design [31], optimization of a thermal water jet propulsion system [32].

GAs owe their name to an early emphasis on representing and manipulating individuals at
the level of genotype instead of phenotypic representation. In Holland’s original work [33], GAs were

4

proposed to understand adaptation phenomena in both natural and artificial systems and they have
three key features that distinguish themselves from other computational methods modeled on natural
evolution:
1. The use of bitstring for representation
2. The use of crossover as the primary method for producing variants
3. The use of proportional selection
Soon these methods are used to solve design optimization problems including discrete design
parameters and then real parameter optimization problems. Early applications of GAs are optimization
of gas pipeline control [34], structural design optimization [34], aircraft landing strut weight
optimization [35], keyboard configuration design [36], etc. It should be mentioned that GAs have
contributed to establish the schema theorem and recognize the role and importance of crossover
through attentive theoretical analysis.

Though all three algorithms, EP, ESs, and GAs, originally have their distinguishing
characteristics according to the level of organic evolution modeling, such classification is not useful
anymore. For example, many GA practitioners have abandoned bitstring for floating-point
representations. ES practitioners often use crossover operators as a reproduction operator. Application
of EP is no longer limited to the evolution of finite state machines. New evolutionary approaches such
as genetic programming [37] have been rising. Therefore, today all these systems are often collectively
called “Evolutionary Algorithm (EA)” or “Evolutionary Computation (EC).”

1.3.2 Representation of Individuals
The first decision in applying an EA to seek optimal values for continuous variables is how

to represent design parameters of an individual. Roughly speaking, there are two classes of
representations: binary representations and floating-point representations.

The use of the binary representation originates in GAs that use a bitstring to model an
individual. When a bitstring is used to represent an individual, however, it is required to transform real
design parameters into binary numbers. Since binary substrings representing each parameter with the
desired precision are concatenated to form a chromosome for EAs, the resulting chromosome
encoding a large number of design variables would result in a huge string length. For example, for 100
variables with a precision of six digits, the string length is about 2000. EAs would perform poorly for
such design problems. In addition, the binary representation of real design parameters presents the
difficulty of so-called hamming cliffs, which comes from discrepancy between the representation
space and the problem space. For instance, two points close to each other in the representation space
might be far in the binary represented problem space. As a consequence, EAs using the binary
representation is unable to focus the search effort in a close vicinity of the current population. It is still
an open question to construct efficient evolutionary operators that suit to such a modified problem
space.

The use of the floating-point representation originates in EP and ESs. In the floating-point
representation, an individual is characterized by a vector of real numbers. It is more natural to use the
floating-point representation for real parameter optimization problems because it is conceptually
closest to the real design space, and moreover, the string length is reduced to the number of design
variables. It has been reported that real-coded EAs outperformed binary-coded EAs in many design
problems [38,39]. Therefore, all EAs used in this study adopt the floating-point representation. An
example of binary and floating-point representations is illustrated in Fig. 1.1.

5

1 1 0 0 0 1 0 1 1

0.6 , 0.1 , 0.3

0.6 0.1 0.3

design parameter values mapping
000 … 0.0
001 … 0.1
010 … 0.2
011 … 0.3
100 … 0.4
101 … 0.5
110 … 0.6
111 … 0.7

Fig. 1.1 An example of binary and floating-point representations

1.3.3 Mechanics of Evolutionary Algorithms
In spite of the diversity in EAs, they have common components: iterative selection biased by

fitness, recombination, and mutation. Selection is a process in which design candidates are selected for
mating based on their fitness values. It may include alternation of generations and selection of mating
partners. The new design candidates are then generated by a recombination operator and a mutation
operator. Figure 1.2 illustrates flowchart of EAs. Each item in the figure will be presented in the
following subsections.

1.3.3.1 Initialization
An initial population of design candidates is generated. This often is accomplished by

random sampling from the design space.

selection

initialization

evaluation

recombination

termination

mutation

Fig. 1.2 Main flowchart of EAs

6

1.3.3.2 Evaluation
The fitness of all individuals is evaluated by objective function values. When CFD codes are

used to calculate aerodynamic performances, this phase consumes most of the CPU time.

1.3.3.3 Selection
Selection is a process in which fitter individuals are selected to reproduce offsprings for the

next generation. In nature, an individual undergo two different selection pressures before producing its
offspring, i.e., survival to adult state and find of its mates. Selection of EAs models these processes.

1.3.3.3.1 Alternation of generations (survival to adult state)
This phase selects N individuals from both the parents and children to be stored in the

mating pool where the total number of the parents and children is greater than the population size N. In
non-overlapping systems, parents and offspring never compete with each other. The parent population
is always replaced by the offspring population without any selection process; the lifetime of each
individual is one generation. When a non-overlapping system is adopted, selection pressure is put only
in the next parental selection phase.

Overlapping models, on the contrary, give selection pressure where parents and children
compete for survival. Selection pressure, however, varies considerably from one overlapping model to
another that includes strategies such as random selection, the best-N selection [40,41], and niche-
formation methods. In the random selection, N individuals are selected randomly and thus, no
selection pressure is put. As a result, selection pressure is required in the parental selection phase. In
the best-N selection, the N best individuals are selected from both the parents and children. This
selection brings selection pressure according to their fitness values. In the niche-formation methods, N
individuals are drawn from both the parents and children according to their similarity with each other.
Because the diversity is important for evolution, deletion of similar individuals will help to maintain it.
Typical example is De Jong’s crowding scheme [42] where some parents similar to the offsprings are
replaced by them.

1.3.3.3.2 Selection of mating pairs (parental selection)
This phase selects pairs of individuals from the mating pool that will produce offsprings for

the next generation. The commonly used is to assign each individual a probability of selection on the
bias of its fitness. Goldberg and Richardson also suggest selection according to fitness modified by
sharing function for the maintenance of diversity in the population1 [43].

Fitness-proportional selection A widely-used method is the fitness-proportional selection
[34]. In this method, the selection probability of each individual is calculated by dividing its fitness by
the sum of the fitness of all individuals. Then, the parents are selected by either roulette-wheel
selection [34] or Stochastic Universal Sampling (SUS) [44]. Figure 1.3 shows the operation of the
roulette-wheel selection that assigns a portion of the wheel proportional to the selection probability
and starts spinning the roulette wheel: each time, a single individual is selected.

The most important concern in a stochastic selection is to prevent loss of population
diversity due to its stochastic aspect so-called genetic drift. For instance, in the above example, it is
possible that only the individuals I-1 and I-2 are selected to produce all offsprings. The basic
consideration of the SUS is to prevent genetic drift by selecting a number of parents each wheel spin.
Figure 1.4 shows an example where four parents are selected at a single wheel spin from four
individuals.

1 Detailed description of the sharing function will be given in subsection 1.4.4.

7

I-1

I-2

I-3

I-4

I-1

I-2

I-3

I-4

0.11I-4
0.22I-3
0.33I-2

0.44I-1

selection
probability

fitnessindividual

0.11I-4
0.22I-3
0.33I-2

0.44I-1

selection
probability

fitnessindividual

Fig. 1.3 Roulette-wheel selection

I-1

I-2

I-3

I-4

I-1

I-2

I-3

I-4

0.11I-4
0.22I-3
0.33I-2

0.44I-1

selection
probability

fitnessindividual

0.11I-4
0.22I-3
0.33I-2

0.44I-1

selection
probability

fitnessindividual

Fig. 1.4 Stochastic universal sampling

 Ranking selection Ranking selection assigns selection probabilities on an individual’s rank,
ignoring absolute fitness value [45]. In this method, the individuals in the mating pool are sorted
according to their fitness values and then assigned a count that is solely a function of their rank. The
best individual receives rank 1, the second best receives 2, and so on. The selection probability is
reassigned according to rank, for example, as an inverse of their rank values. In [45], Michalewicz
proposed a nonlinear function to assign the selection probability as,

)1()1(−−⋅= rankccprob (1.1)

where c is a user-defined parameter. Then, the parents are selected by either roulette-wheel selection
or SUS.

Tournament selection Tournament selection [46] operates by choosing some individuals
randomly from a population and selecting the best from this group to survive into the next generation.
Binary tournaments where tournaments are held between pairs of individuals are the most common.

Many other selection techniques are implemented into EAs. But why is the choice of
selection techniques so important? The answer is that an appropriate level of selection pressure is the
key to a successful evolution. An evolution under too strong selective pressure leads premature loss of
diversity and results in premature convergence of an EA. It is well known that if the roulette-selection
is used, diversity in a population is likely to be lost in early generations due to domination of the entire
population by a few super individuals that are much better than the average fitness. On the contrary,
low selective pressure can make the search ineffective. Thus, it is important to find a proper balance
and various selection techniques attempt to achieve this.

8

1.3.3.4 Recombination
Recombination is a process in which new individuals are generated by exchanging features

of the selected parents with the intent of improving the fitness of the next generation. This process is
sometimes called crossover, especially when genotypic representation is used. These new individuals
are then subjected to mutation. There are a number of different ways in which the recombination
operation can be implemented. The following describes some of the recombination operators for the
floating-point representation.

Blend crossover (BLX-α) The most common approach for recombination of two parents
represented by a vector of real numbers is BLX-α proposed by Eshelman and Schaffer [47]. In this
approach, children are generated on a segment defined by two parents, but the segment may be
extended equally on both sides determined by a user specified parameter α. Thus, a child solution is
expressed as:

2)1(11 ParentParentChild ⋅−+⋅= γγ (1.2)

21)1(2 ParentParentChild ⋅+⋅−= γγ (1.3)

where

γ = (1 + 2α) u - α (1.4)

Child1, Child2 and Parent1, Parent2 denote design parameters of the children and parents,
respectively. The uniform random number u in [0,1] is regenerated for every design parameter. Figure
1.5 gives schematic view of BLX-α. For example, BLX-0.5 samples children that lie on an interval
that extends 0.5d on either side of the interval between the parents. BLX-0.0, on the other hand, is
equivalent to Radcliffe’s flat crossover [48] that uniformly samples children between the two parents.

Parent2Parent1

α⋅d d α⋅d

Possible sampling region
Fig. 1.5 BLX-α

When an EA is applied to a design optimization problem, what is important is balance of
two conflicting goals: exploiting good solutions and exploring the search space [49]. An extreme
example is the random search that explores the search space without any exploitation of the promising
regions. As a result, random search enhances the reliability in multimodal situations, but reduces the
convergence rate. Another extreme is gradient-based methods that exploit the region adjacent to the
initial solution but neglects exploration of the search space. Such a search likely ends up with finding a
local optimum. In this sense, the parameter α plays very important role in BLX-α, because α
represents the proportion of exploration to exploitation. BLX-0.0, for instance, exploits the region
between two parents but ignores exploration. Thus, BLX-0.5 is usually used in which both exploration
and exploitation are carried out equally.

9

Simulated binary crossover (SBX) SBX [50] is developed by Deb et al. by incorporating
the essence of self-adaptation mechanism of ESs into crossover operator. This approach is similar to
BLX-α in the sense that children are created in proportion to the difference in parents but SBX has an
unique property – that is, solution points near the parents are more likely to be selected as their
offsprings than solution points distant from the parents. In SBX, the children solutions are expressed
as follows:

()[]2)1(115.01 ParentParentChild qq ⋅−+⋅+= ββ (1.5)

()[]2)1(115.02 ParentParentChild qq ⋅++⋅−= ββ (1.6)

where the blending parameter βq is found so that the area under a specified probability distribution
function P(β) from 0 to βq is equal to a uniform random number u defined in [0,1]:

−

≤
=

+

+

otherwise
u

uifu
q 1

1

1
1

)1(2
1

5.0_)2(

η

η

β (1.7)

+
≤+= + otherwise

if
P

2/)1(5.0
1_)1(5.0

)(η

η

βη
ββηβ (1.8)

where

21
21

ParentParent
ChildChild

−
−=β (1.9)

The distribution index η is any nonnegative real number. In [51], it was reported that an EA with SBX
outperformed both ESs and an EA with BLX-0.5 on some test functions.

Conventional Crossovers This kind of crossover operators include one-point, two-point,
multi-point, and uniform crossovers. In the one-point crossover for the bitstring representation [34],
the bits are swapped between the two parents in segments at a random point of a chromosome in
between the bits. In the floating-point representation, the vector components of two parents are
swapped in groups at a random space of a vector between the vector components. For example, given
a five dimensional space, Parent1 has a vector (x1, x2, x3, x4, x5) and Parent2 has a vector (y1, y2,
y3, y4, y5) and the crossover point was selected to be 3, then the offsprings will carry vectors (x1, x2,
x3 y4, y5,) and (y1, y2, y3, x4, x5). An example of one-point crossover is illustrated in Fig. 1.6. Two-
point, multi-point, and uniform crossovers for the floating-point implementation can be defined in the
same manner.

10

7.9 5.4 2.3 0.4 -1.0

crossover site

Parent 1

Parent 2

Parent 1

Parent 2

5.7 3.5 1.2 -0.1 -2.6

5.7 3.5 1.2 0.4 -1.0

7.9 5.4 2.3 -0.1 -2.6

Fig. 1.6 One-point crossover for floating-point representation

Evolutionary Direction Operator In general, EAs are good at finding a neighborhood of a
global optimum but poor at locating an exact optimum within the neighborhood. As a consequence,
convergence of an EA becomes slower as it approaches to the optimum. Evolutionary direction
operator suggested by Yamamoto and Inoue [52] can improve the convergence by estimating the
direction of evolution from the selected parents. Figure 1.7 schematically shows a generation of an
offspring by the evolutionary direction operator in a two-dimensional optimization problem. By using
a reference point denoted as “Present”, two directions are determined from Parents 1 and 2. An
offspring will be generated in the quadrilateral obtained in the directions of increasing fitness values.
The genes of the offspring Co of the present individual C with the fitness value of F can be written by
the genes and the fitness of the presents (Cp1,Fp1) and (Cp2,Fp2) as:

)()(11 ppo CCFFsignSCC −⋅−⋅+=
)()(22 pp CCFFsignT −⋅−⋅+ (1.10)

where S and T are random numbers between 0 and 1. Since this does not require any evaluation of
gradients, additional computational requirement is negligibly small.

FITNESS

DESIGN VARIABLE 2

DESIGN VARIABLE 1

PARENT 2

PARENT 1

PRESENT

OFFSPRING

Fig. 1.7 Illustration of evolutionary direction operator

11

1.3.3.5 Mutation
The function of mutation is to keep diversity of a population and promote the searching in

the solution space that cannot be represented by the strings of the present population. One of the most
common mutation methods in real-coded EAs is uniform mutation that adds a uniform random number
to each component of an individual’s vector at a probability of pc. Another mutation method is to
Gaussian mutation that mutates each component of an individual’s vector by adding a number from a
Gaussian distribution with a mean of zero. This reflects populations in nature, where gross
characteristics such as weight or height generally follow a normal distribution.

1.3.3.6 Elitist Strategy
Since evolution in EAs depends on stochastic operators, EAs do not guarantee a monotonic

improvement in objective function value of the design unless deterministic overlapping systems are
used. To ensure a monotonic improvement, De Jong proposed so-called elitist strategy [53], in which
some of the best individuals are copied into the next generation without applying any evolutionary
operators. EAs incorporating non-overlapping system usually adopt this strategy.

1.3.4 Parallelization
In biological evolution, every individual in a generation undergoes a series of evolution

processes such as evaluation, selection and mating in parallel. Therefore, EAs that mimic biological
evolution to solve design problems are intrinsically parallel search methods and consequently EAs can
be easily parallelized. When an EA is implemented on a parallel machine, there is a choice between:

a) Preserving the global population while parallelising fitness evaluation.
b) Dividing the global population into several sub-populations and evolving a sub-population

on each processor.
c) Preserving the global population while parallelising the EA operators that are restricted on

the neighboring individuals.
The methods a) are categorized as global parallel evolutionary algorithms. A commonly-used

approach is a master-slave implementation where each individual’s fitness is evaluated simultaneously
on a different processor (slave processor) and the master collects the results and applies the
evolutionary operators to produce the next generations. An asset in this approach is that time saving
can be easily achieved by distributing the computational effort without any change to the standard EAs
since an individual’s fitness evaluation process is independent of that of the other. Moreover, parallel
efficiency can be very high when the fitness evaluation consumes most of CPU time.

The methods b) categorized as island distributed evolutionary algorithms [54] are positive parallel
evolutionary algorithms. In these methods, a population is divided into sub-populations with some
restrictions imposed on the mixing of these semi-isolated subpopulations. Some studies have reported
that these methods can be more robust than the standard EAs since different subpopulations will tend
to explore different portions of the search space (see for instance [55,56]) Some EA practitioners
implement these methods even on serial machines. It was also reported that, however, these methods
do not always produce better results [57].

The third methods c) categorized as cellular evolutionary algorithms are the extension of b). The
mixing in the population is strictly restricted to the neighbors and thus quick domination in a
population by a super individual is prevented.

1.4 Multiobjective Evolutionary Algorithms

1.4.1 Introduction
Many real-world design problems require simultaneous optimization of multiple and often

competing objectives. Such problems are called multiobjective problems (MOPs). Although single-
objective optimization problems may have a unique optimal solution, MOPs often present a set of
compromised solutions, largely known as the tradeoff surface, Pareto-optimal solutions or non-

12

dominated solutions. These solutions are optimal in the sense that no other solutions in the search
space are superior to them when all objectives are considered. In general, the goal of MOPs is to find
as many Pareto-optimal solutions as possible. Once such solutions reveal tradeoff information among
different objectives, the higher-level decision-maker will be able to choose a final design with further
considerations.

Consider, for instance, the car design. There are a wide variety of demands from consumers
such as fuel efficiency, maximum speed and cost. A perfect design might be a car that maximizes fuel
efficiency and maximum speed while minimizing cost. However, these goals are conflicting in
general: lower vehicle costs may not result in the desired maximum speed, an alternative car of high
maximum speed may end in an expensive gas-guzzler. Therefore, the higher-level decision-maker
selects one of such Pareto-optimal designs with other considerations: which profits our company the
best?

According to the above discussion, the primary goal of MOP optimizations is, unlike that of
single objective optimizations, to find various Pareto-optimal solutions to show the precise tradeoff
information among the competing objectives. In this sense, EAs seem to be particularly suited for
MOP optimizations because they can uniformly sample many Pareto-optimal solutions in parallel via
its population of solutions. EAs developed for MOPs are called Multiobjective Evolutionary
Algorithms (MOEAs).

Schaffer is usually recognized as a pioneer MOEA researcher, who first perceived an
MOEA’s population capability of finding Pareto-solutions within a single optimization run [58,59]. In
his “Vector Evaluated Genetic Algorithm (VEGA),” appropriate fractions of the next generation are
sequentially selected from the whole of the present generation based on their performance in each of
the objectives. In a two-objective problem, for instance, VEGA would select half of the next
generation’s population using one of the objectives and the other half using another objective. These
sub-populations were then shuffled together and evolutionary operators such as crossover and
mutation are applied as usual. Although Schaffer reported some success, VEGA tends to find only
extreme regions on the Pareto front since it choose specialists in each objective ignoring solutions
performing “acceptably” in some of the objectives.

A breakthrough in MOEA research was given by Goldberg [34]. In his literature, he
suggested to use the concept of Pareto optimality though selection and ranking methods. This offers
capability of sampling uniform Pareto solutions to Evolutionary approaches. Thereafter, many
MOEAs have been developed based on this concept [60-62] and most of the MOEA practitioners, at
present, use such Pareto-based MOEAs.

1.4.2 Pareto Optimality
In real-world MOPs that usually involve conflicting objectives, there is no unique optimum,

but rather a set of compromised solutions known as Pareto optimal solutions or non-dominated
solutions [63]. These solutions distribute on the edge of the feasible region, showing the tradeoff
information between the conflicting objectives. Figure 1.8 shows an example of MOPs, which is to
minimize two conflicting objectives. In this problem, there is no single perfect solution that minimizes
both f1 and f2. Instead, there are innumerable compromised optimal solutions such as solutions A, B,
and C. In optimization terminology, all these solutions are Pareto optimal because there is no better
solution on both objectives. On the other hand, one can say that the solution D is inferior to B because
it has larger values than B in both objectives. The final goal in a MOP is to find such Pareto optimal
solutions as many as possible to represent tradeoff information among different objectives.

The terms “dominance” and “Pareto optimality” can be mathematically defined for a general
problem of simultaneously minimizing an n-components vector function (f= f1(x),… ,fn(x)) of an m-
dimensional decision variable vector (x=x1,… ,xm) from some universe Ω .

Definition 1 (Dominance): A vector u = (u1,… ,um) is said to dominate v = (v1,… ,vm) if and only if
u is partially less than v, i.e., { } { } iiii vumivumi <∈∃∧≤∈∀ :,...,1,,...,1

13

Definition 2 (Pareto optimality): A solution Ω∈x is said to be Pareto-optimal with respect to Ω
if and only if there is no x’ Ω∈ for which v=f(x’)=(f1(x’),… ,fn(x’)) dominates u=f(x)=(f1(x),… ,fn(x)
).

1.4.3 Pareto-Based MOEAs
In this subsection, a few salient Pareto-based MOEAs are presented.

1.4.3.1 Multiobjective Genetic Algorithm (MOGA)
Fonseca and Fleming proposed multiobjective GA [60] that uses non-dominated sorting and

ranking selection method. In MOGA, an individual’s rank corresponds to the number of individuals in
the current population by which it is dominated. Non-dominated individuals are, therefore, all assigned
the same rank, while dominated ones are penalized according to how concentrated the population is in
the corresponding region of the tradeoff surface. This approach is also easier to formulate, and to
analyze, mathematically. This ranking procedure for a minimization problem is illustrated in Fig. 1.9.

f2

f1

Pareto-optimal set

A

B

C

D

infeasible region

feasible region

E

F

G

Fig. 1.8 The concept of Pareto optimality

f2

f1

Pareto-optimal set

A(1)

B(1)

C(1)

D(2)

feasible region

E(2)

F(3)

G(5)

14

Fig. 1.9 Fonseca’s ranking method for a minimization problem

1.4.3.2 Niched Pareto Genetic Algorithm (NPGA)
Niched Pareto Genetic Algorithm (NPGA) holds a type of binary tournament selection called

a Pareto domination tournament [61]. In this tournament, the two strings are compared to a sample of
the population and the number of dominating points in the sample is counted for both individuals. The
individual with the least number of dominating points survives. The size of the sample used can be
varied depending on the level of selection pressure required. Obviously larger size samples will
increase the bias towards stronger solutions. This method is analogous to performing Fonseca’s
ranking method locally.

1.4.3.3 Non-Dominated Sorting Genetic Algorithm (NSGA)
Non-dominated sorting Genetic Algorithm (NSGA) uses Goldberg’s non-dominated sorting

procedure [62]. The idea behind NSGA is to assign equal probability of reproduction to all non-
dominated individuals in the population. This method involves first finding all of the Pareto optimal
points within a population, giving them a rank of one and removing them. The remaining population
members are again processed to find non-dominated individuals and these are given rank two and
removed and so on until all of the population has been ranked. This ranking method is illustrated in
Fig. 1.10.

f2

f1

A(1)

B(1)

C(1)

D(2)

feasible region

E(2)

F(2)

G(3)

Fig. 1.10 Goldberg’s ranking for a minimization problem

1.4.4 Niching
In MOEAs, maintenance of diversity in the population is important to sample uniform

Pareto-optimal solutions. To preserve this diversity, Goldberg’s fitness sharing [34] is used most
frequently, which is a fitness scaling mechanism based on the idea that individuals in a particular
niche have to share the available resources.

For a minimization problem, i-th individual’s shared fitness function ()iF ′ is equal to its
prior fitness)(iF multiplied by its niche count, which is the sum of sharing function (sh) values
between itself and each individual in the population:

∑
=

⋅=′
N

i
ijdshiFiF

1

)()()((1.11)

15

where N is a population size. The most commonly-used sharing function is given by the following
equation:

<

−=

others

d
d

dsh shareij
share

ij

ij

0

1)(σ
σ

α

 (1.12)

where σshare is the niche size. If the distance between two individuals is greater than or equal to σshare,
they do not affect each other’s shared fitness.

The distance can be measured with respect to a metric in either phenotypic or genotypic
space. A genotypic sharing measures the interchromosomal Hamming distance. A phenotypic sharing
can further be classified into two types. One measures the distance between the design variables. The
other, on the other hand, measures the distance between the objective function values. In MOEAs, a
phenotypic sharing is usually preferred to distribute the population over the Pareto-optimal region.
Both MOGA and NPGA perform sharing within objective function space. NSGA, on the other hand,
performs sharing by measuring the vector distance between the decoded design variables, emphasizing
maintenance of diversity in the parameter set.

The choice of σshare has a significant impact on the performance of MOEAs. Fonseca and
Fleming [60] gave a simple estimation of σshare in the objective function space as

0
)()(

1 11 =
−−+−

−
∏ ∏

= =−

share

q

i

q

i
iishareii

q
share

mMmM
N

σ

σ
σ (1.13)

where q is a dimension of the objective vector, and Mi and mi are maximum and minimum values of
each objective, respectively. When this formula is applied at every generation, the resulting σshare is
adaptive to the population during the evolution process. Niche counts can be consistently incorporated
into the fitness assignment according to rank by using the to scale individual fitness within each rank.

 1.5 Documentation Organization
 The remainder of this document is organized as follows. Chapter 2 proposes a new EA,

named “real-coded Adaptive Range Genetic Algorithms (real-coded ARGAs).” To display advantages
of the real-coded ARGAs, they will be first applied to a test function optimization problem. Then, an
aerodynamic airfoil shape optimization is demonstrated to ensure the feasibility of the proposed
approach in aerodynamic design problems. In Chapter 3, a tree structure of design parameters inspired
by the data structure of Genetic Programming is introduced as a coding structure. The coding structure
is determined by the epistasis analysis using experimental design in advance. First, feasibility of
typical airfoil shape parameterization techniques will be examined though reproduction of a NASA
supercritical airfoil and an aerodynamic airfoil shape optimization. Then, the present approach is
applied to aerodynamic design using MOEAs coupled with a potential flow solver. Chapter 4 provides
the aerodynamic optimization results of a transonic wing design by using the proposed EA. CFD
analyses are performed using a three-dimensional Navier-Stokes code. In Chapter 5, the aerodynamic
optimization of a supersonic wing design will be demonstrated. Chapter 6 concludes this research and
discusses directions for future research.

16

 References
[1] Obayashi, S., “Inverse Optimization Method for Aerodynamic Shape Design,” Recent
Development of Aerodynamic Design Methodologies –Inverse Design and Optimization –, Friedr.
Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, Germany, 1999, pp.25-54.
[2] Hicks, R. M., Murman, E. M. and Vanderplaats, G. N., “An Assessment of Airfoil Design by
Numerical Optimization,” NASA TM X-3092, Ames Research Center, Moffett Field, California, July
1974.
[3] Hicks, R. M. and Henne, P. A., “Wing Design by Numerical Optimization,” Journal of Aircraft,
Vol. 15, 1978, pp.407-412.
[4] Baysal, O. and Eleshaky, M. E., “Aerodynamic Design Optimization Using Sensitivity Analysis
and Computational Fluid Dynamics,” AIAA Journal, Vol. 30, No. 3, 1992, pp. 718-725.
[5] Reuther J. J. and Jameson, A., “Supersonic wing and wing-body shape optimization using an
adjoint formulation,” Technical report, The Forum on CFD for Design and Optimization, (IMECE95),
San Francisco, California, November 1995.
[6] Reuther, J. J., Jameson, A., Alonso, J. J., Rimlinger, M. J. and Saunders, D., “Constrained
Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers,
Part 1,” Journal of Aircraft, Vol.36, No. 1, January-February, 1999, pp.51-60.
[7] Reuther, J. J., Jameson, A., Alonso, J. J., Rimlinger, M. J. and Saunders, D., “Constrained
Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers,
Part 2,” Journal of Aircraft, Vol.36, No. 2, January-February, 1999, pp.61-74.
[8] Press, W. H., Teukolsky, S.A., Vetterling, W. T. and Flannery, B., Numerical Recipes in Fortran
77: The Art of Scientific Computing, second edition, the Press syndicate of the University of
Cambridge, New York, 1996.
[9] Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-
Verlag, New York, 1971, Translated by Mitter, S.K.
[10] Miettinen, K., Makela, M. M., Neittaanmaki, P. and Periaux, J. (Eds.), Evolutionary Algorithms
in Engineering and Computer Science, John Willey & Sons Ltd, Chichester, U.K., 1999, Chaps.17-24.
[11] Bramlette, M. F. and Cusic, R., “A Comparative Evaluation of Search Methods Applied to the
Parametric Design of Aircraft,” Proceedings of the Third International Conference on Genetic
Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1989, pp.213-218.
[12] Parmee, I. C. and Watson, A. H., “Preliminary Airframe Design Using Co-Evolutionary
Multiobjective Genetic Algorithms,” Proceedings of the Genetic and Evolutionary Computation
Conference, Vol. 2, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1999, pp.1657-1671.
[13] Powell, D. J., Tong, S. S. and Sholbick, M. M., “EnGENEous Domain Independent, Machine
Learning for Design Optimization,” Proceedings of the Third International Conference on Genetic
Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1989, pp.151-159.
[14] Quagliarella, D. and Cioppa, A. D., “Genetic Algorithms applied to the Aerodynamic Design of
Transonic Airfoils,” AIAA-94-1896-CP, June 1994.
[15] Yamamoto, K. and Inoue, O., “Applications of Genetic Algorithm to Aerodynamic Shape
Optimization,” AIAA Paper 95-1650-CP, A collection of technical papers, 12th AIAA Computational
Fluid Dynamics Conference, CP956, San Diego, CA, June 1995, pp. 43-51.
[16] Cao, H. V. and Blom, G. A., “Navier-Stokes/Genetic Optimization of Multi-Element Airfoils,”
AIAA 96-2487, June 1996.
[17] Obayashi, S. and Oyama, A., “Three-Dimensional Aerodynamic Optimization with Genetic
Algorithms,” Proceedings of the Third ECCOMAS Computational Fluid Dynamics Conference, John
Wiley & Sons, Ltd, Chichester, U.K., 1996, pp.420-424.
[18] Darwin. C., On the Origin of Species by Means of Natural Selection, Murray, London, 1859.
[19] Fogel, L. J., Owens, A. J. and Walsh, M.J., Artificial Intelligence Thorough Simulated Evolution,
John Wiley & Sons, Ltd, Chichester, U.K., 1966.
[20] Fogel, D. B., Evolutionary Computations: Toward a New Philosophy of Machine Intelligence,
IEEE Press, New York, 1995.
[21] Fogel, D. B. and Atmar, J. W., “Comparing genetic operators with Gaussian mutation in

17

simulated evolutionary processes using linear systems,” Biological Cybernetics, Vol.63, 1990, pp.111-
114.
[22] Fogel, D. B. and Stayton, L. C., “On the effectiveness of crossover in simulated evolutionary
optimization,” BioSystems, Vol. 32, No. 3., 1994, pp171-182.
[23] Sebald, A. and Schlenzing, J., “Minimax Design of Neural Net Controllers for Highly Uncertain
Plants,” IEEE Transactions of Neural Networks, Vol. 5, No. 1., pp.73-82.
[24] Back, T., Rudolph, G. and Schwefel, H. -P., “Evolutionary programming and evolution strategies:
Similarities and differences,” Proceedings of the Second Annual Conference on Evolutionary
Programming, Evolutionary Programming Society, San Diego, CA, 1993, pp.11-22.
[25] Rechenberg, I., “Cybernetic Solution Path of an Experimental Problem,” Ministry of Aviation,
Royal Aircraft Establishment, U.K., 1965.
[26] Rechenberg, I., Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der
biologischen evolution, Frommann-Holzboog Verlag, Stuttgart, Germany, 1973.
[27] Schwefel, H. -P., Numerical Optimization for Computer Models, John Willey, Chichester, U.K.,
1981.
[28] Schwefel, H. -P., Evolution and Optimum seeking, Sixth-Generation Computer Technology
Series, Wiley, New York, 1995.
[29] Heusener, G., “Optimierung natriumgekuhlter scheneller Brutreaktoren mit Methoden der
nichtlinearen Programmierung,” report KFK-1238, Nuclear Research Center (KfK) Karlsruhe,
Germany, July 1970.
[30] Hartmann, D., “Optimierung balkenartiger Zylinderschalen aus Stahlbeton mit elastischem und
plastischem Werkstoffverhalten,” Doctoral Dissertation, University of Dortmund, 1974.
[31] Brudermann, U., “Entwicklung und Anpassung eines vollstandigen Ansteuersystems fur
fremdenergetisch angetriebene Ganzarmprothesen,” Fortschrittberichte der VDI-Zeitschriften, Vol.17
(Biotechnik), No. 6, December. 1977.
[32] Markwich, P., “Der thermische Wasserstrahlantrieb auf der Grundlage des offenen Clausius-
Rankine-Prozesses - Konzeption und hydrothermodynamische Analyse,” Doctoral Dissertation,
Technical University of Berlin, 1978.
[33] Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann
Arbor, 1975.
[34] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley Publishing Company, Inc., Reading, MA, 1989.
[35] Minga, A. K., “Genetic algorithms in aerospace design,” the AIAA Southeastern Regional
Student Conference, Huntsville, AL, 1986.
[36] Glover, D. E., “Experimentation with an adaptive search strategy for solving a key-board
design/configuration problem,” Doctoral Dissertation, University of Iowa, 1986.
[37] Koza, J., Genetic Programming: On the programming of computers by means of natural
selection, Bradford Books, Cambridge, MA, 1992.
[38] Janikow, C. Z. and Michalewicz, Z., “An Experimental Comparison of Binary and Floating Point
Representations in Genetic Algorithms,” Proceedings of the Fourth International Conference on
Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1991, pp.31-36.
[39] Wright, A. H., “Genetic Algorithms for Real Parameter Optimization,” Foundations of Genetic
Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1991, pp.205-218.
[40] Eshelman, L. J., “The CHC Adaptive Search Algorithm: How to Have Safe Search When
Engaging in Nontraditional Genetic Recombination,” Foundations of Genetic Algorithms, Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1991, pp.265-283.
[41] Tsutsui, S. and Fujimoto, Y., “Forking Genetic Algorithms with blocking and shrinking modes
(fGA),” Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1993, pp.206-213.
[42] De Jong, K. A., “An analysis of the behavior of a class of genetic adaptive systems,” Doctoral
Dissertation, University of Michigan, 1975.
[43] Goldberg, D. E. and Richardson, J., “Genetic algorithms with sharing for multimodal function
optimization,” Proceedings of the Second International Conference on Genetic Algorithms, Morgan

18

Kaufmann Publishers, Inc., San Mateo, CA, 1987, pp.41-49.
[44] Baker, J. E., “Reducing Bias and Inefficiency in the Selection Algorithm,” Proceedings of the
Second International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San
Mateo, CA, 1987, pp.14-21.
[45] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, third revised
edition, Springer-Verlag, Berlin, 1996.
[46] Goldberg, D. E. and Deb, K., “A comparative analysis of selection schemes used in genetic
algorithms” Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1991, pp.69-93.
[47] Eshelman, L. J. and Schaffer, J. D., “Real-coded genetic algorithms and interval schemata,”
Foundations of Genetic Algorithms.2,” Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1993,
pp.187-202.
[48] Radcliffe, N. J., “Genetic Neural Networks on MIMD Computers, Doctoral Dissertation,
University of Edinburgh, Edinburgh, U.K., 1990.
[49] Booker, L. B., “Improving Search in Genetic Algorithms,” Genetic Algorithms and Simulated
Annealing, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1987, pp.61-73.
[50] Deb, K. and Goyal, M., “A robust optimization procedure for mechanical component design
based on genetic adaptive search,” Transactions of the ASME: Journal of Mechanical Design, Vol.
120, No. 2, 1998, pp.162-164.
[51] Deb, K. and Beyer, H. -G., “Self-Adaptation in Real-Parameter Genetic Algorithms with
Simulated Binary Crossover,” Proceedings of the Genetic and Evolutionary Computation Conference,
Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1999, pp.172-179.
[52] Yamamoto, K. and Inoue, O., “New Evolutionary Direction Operator for Genetic Algorithm,”
AIAA Journal, Vol. 33, No. 10, Oct. 1995, pp. 1990-1992.
[53] De Jong, K. A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” Doctoral
Dissertation, University of Michigan, Ann Arbor, 1975.
[54] Cohoon, J. P., Hedge, S. U., Martin, W. N. and Richards, D., “Punctuated equilibria: A parallel
genetic algorithm,” Proceedings of the Second International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1987, pp.148.
[55] Lin, S. C., Punch, W. F. and Goodman, E. D., “Coarse-grain parallel genetic algorithms:
Categorization and a new approach,” Sixth IEEE SPDP, 1994, pp.28-37.
[56] Loraschi, A., Tettamanzi, A, Tomassini, M and Verda, P., “Distributed genetic algorithms with an
application to portfolio selection problems,” Proceedings of the International Conference on Artificial
Neural Networks and Genetic Algorithms, Springer-Verlag Wien, New York, 1995, pp.384-387.
[57] Belding, T. C., “The Distributed Genetic Algorithm Revisited,” Proceedings of the Sixth
International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1995, p.114-121.
[58] Schaffer, J. D., “Some Experiments in Machine Learning Using Vector Evaluated Genetic
Algorithms,” Doctoral Dissertation, Vanderbilt University, Nashville, TN, 1984.
[59] Schaffer, J. D., “Multiple Objective Optimization with Vector Evaluated Genetic Algorithms,”
Proceedings of the First International Conference on Genetic Algorithms and Their Applications,
Lawrence Erlbaum Associates, Publishers, Hillsdate, NJ, 1985, pp.93-100.
[60] Fonseca, C. M., “Multiobjective Genetic Algorithms with Application to Control Engineering
Problems,” Doctoral Dissertation, University of Sheffield, 1995.
[61] Horn, J. and Nicholas N., “Multiobjective Optimization Using the Niched Pareto Genetic
Algorithm,” Technical Report 930005, University of Illinois at Urbana-Champaign, 117
Transportation Building, 104 South Matthews Avenue, Urbana, IL61801-2996, Illinois Genetic
Algorithms Laboratory (IlliGAL), July 1993.
[62] Srinivas, N. and Deb., K., “Multiobjective Optimization Using Nondominated Sorting in Genetic
Algorithms,” Evolutionary Computation, Vol.2, No.3, 1994, pp.221-248.
[63] Stewart, T. J., “A critical Survey on the Status of Multiple Criteria Decision Making and
Practice,” International Journal of Management Science, Vol.20, No5/6, 1992, pp.569-586.

