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ABSTRACT: Evolutionary Algorithm (EA) is applied to a practical three-dimensional shape
optimization for aerodynamic design of an aircraft wing. Aerodynamic performances of the design
candidates are evaluated by using the three-dimensional compressive Navier-Stokes equations. A
structural constraint is introduced to avoid an apparent solution of zero thickness wing for low drag
in high speeds. To overcome enormous computational time necessary for the optimization, the
computation is parallelized on Numerical Wind Tunnel at National Aerospace Laboratory in Japan,
a parallel computer with 166 vector-processing elements. The results ensure the capability of the
EA in handling large-scale design optimizations.
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1. INTRODUCTION
The aircraft industry, like others, is increasingly exposed to considerable commercial pressures:
Boeing Company and Airbus Industrie are struggling for supremacy on the large-size civil airliner
(seating more than 100 passengers) market, while many companies, such as Bombardier, Embraer,
Dornier, Dasa, are fighting for a larger share of the expanding regional jet aircraft market. Since the
success of such commercial products depends on cost and timeliness as well as quality, the design
process is being reengineered to save cost and time scales.

With advances in Computational Fluid Dynamics (CFD) and computer hardware, CFD has
become an integral part of the aircraft design process. CFD has contributed to cut aerodynamic
design cost and time scales by reducing the number of required wind tunnel tests. However, it is
just an instrument for estimating aerodynamic performance of a given aircraft configuration. On the
whole, the basis of the design processis trial and error, and the success of the final design depends
on the knowledge and intuition of the designer. CFD technology will be able to display its ability to
the full when it is coupled with numerical optimization methods by displacing any human
interactions in the design procedure.

Yet, despite the fact that numerical optimization methods have been successfully used for a
countless number of design problems, an application of numerical optimization to aerodynamic
design still remains as a formidable challenge because of the following difficulties: 1) Objective



function landscape of an aerodynamic optimization is often multimodal and nonlinear because the
flow field is governed by a system of nonlinear partial differential equations 2) Function
evaluations using a CFD code, especially athree-dimensional Euler or Navier-Stokes code, are very
expensive. Due to the above difficulties, aerodynamic design problems require a numerical
optimization tool to be very robust and efficient as well.

The gradient-based methods are well-known optimization algorithms that probe the optimum
by calculating the local gradient information. These methods are efficient in searching optimums.
Not only that, the optimum obtained from these methods will be a global one, if the objective and
constraints are differentiable and convex. Therefore, this approach has been widely used for many
design problems including wing design [1], scramjet nozzle design [2], supersonic wing-body
design [3], and more complex aircraft configurations [4,5].

Distribution of an objective function of an aerodynamic design problem, however, is usually
multimodal, and thus, one could only hope for a local optimum neighboring the initial design point
by using the gradient-based methods. Therefore, to find a global optimum, one must start the
optimization process repeatedly from a number of initia points and check for consistency of the
optima obtained. In this sense, the gradient-based methods are neither efficient nor robust for
design automation.

Evolutionary Algorithms (EAS) are emergent optimization algorithms mimicking mechanism
of the natura evolution, where a biological population evolves over generations to adapt to an
environment by selection, recombination and mutation. When EAs are applied to optimization
problems, fitness, individual and genes usually correspond to an objective function value, a design
candidate, and design variables, respectively. One of the key features of EAs is that they search
from multiple points in the design space, instead of moving from a single point like gradient-based
methods do. Furthermore, these methods work on function evaluations alone and do not require
derivatives or gradients of the objective function. These features lead to the advantages such as
Robustness, suitability to parallel computing and simplicity in coupling CFD codes. Owing to these
advantages over the analytical methods, EAs have become increasingly popular in a broad class of
design problems (for example, see [6]). EAs have been also successfully applied to aerodynamic
shape optimization problems such as airfoil shape design [7,8], Multi-element airfoil shape design
[9], subsonic wing shape design [10] and supersonic wing shape design [11].

The previous applications of numerical optimization methods, however, are restricted to more
or less simplified problems involving not more than 10-30 design parameters. In contrast to that, in
real-world design problems, a large number of design parameters must be handled — for example, a
wing shape for a generic transonic aircraft usually parameterized by more than a hundred of design
parameters. Since such problem has highly multidimensional search space and extremely
complicated objective function distribution, even EAs would fail to find a globally optimum.

The objective of this research is to demonstrate capability of an up-to-date EA in handling
rea-world large-scale design optimizations. In the present study, the real-coded Adaptive Range
Genetic Algorithm (real-coded ARGA) [12] coupled with the structured coding [13] will be applied
to a practical transonic wing design optimization. The real-coded ARGA is an emergent EA that
can solve large-scale design optimization problems very efficiently by promoting the population
toward promising design regions during the optimization process. The structured coding also
improves EA search ability by rearranging coding structure by examining interactions between
design parameters in advance.

2. FORMULATION OF DESIGN PROBLEM
The objective of the present wing design problem is maximization of the lift-to-drag ratio L/D at
the transonic cruise design point, maintaining the minimum wing thickness required to stand the
bending moment due to the lift distribution. The cruising Mach number and the angle of attack are



set to 0.8 and O degree, respectively.

The planform of the supercritical wing in the NASA Energy Efficient Transport (EET)
Program [14] is selected as the test configuration for the following design case (Fig.1). Wing
profiles of design candidates are parameterized by the PARSEC airfoils[15]. A remarkable point of
this parameterization technique is that it has been developed aiming to control important
aerodynamic features effectively by selecting the design parameters based on the knowledge of
transonic flows around an airfoil. It is reported that the PARSEC is the most efficient airfoil shape
parameterization technigue among typical parameterization techniques for aerodynamic
optimization [16]. Similar to 4-digit NACA series airfoils, The PARSEC parameterizes upper and
lower airfoil surfaces using polynomials in coordinates X, Z as,

Zzée aﬁ)(Xn-l/Z (1)
n=1

where a, are rea coefficients. Instead of taking these coefficients as design parameters, the
PARSEC airfoils are defined by basic geometric parameters. leading-edge radius, upper and lower
crest location including curvatures, trailing-edge ordinate, thickness, direction and wedge angle as
shown in Fig. 2. These parameters can be expressed by the original coefficients a, by solving
simple simultaneous equations. Eleven design parameters are required for the PARSEC airfoils to
define an airfoil shape in total. In this paper, ten design variables are used to give an airfoil shape
with zero trailing-edge thickness.

The PARSEC parameters and the section angle of attack (in other words, root incident angle
and twist angle) are given at seven span sections, of which spanwise locations are also treated as
design variables except for the wing root and tip locations. The PARSEC parameters are rearranged
from root to tip according to the airfoil thickness so that the resulting wings always have maximum
thickness at the wing root. The twist angle parameter is also rearranged into numerical order from
tip to root. The wing surface is then interpolated in spanwise direction by using the second-order
Spline interpolation. In total, 87 parameters determine a wing geometry. Parameter ranges of the
design space are shown in Table 1.

Figure 1 Wing planform

Figure 2 Design parameters for the PARSEC



Table 1 Parameter ranges of the design space

parameters e Zwe  ame be Xop Zuop Zxxop Xio Zio Zxxo  twistang
upper bound {0030 001 -300 800 070 018 000 0.60 0.02 0.90 7 deg
lower bound | 0.002 -0.01 -13.00 400 030 008 -0.30 0.20 -0.04 0.30 -1deg

3. APPROACH

3.1 Aerodynamic analysis

The flow physics can be represented by a wide range of approximations. Among them, the
Reynolds-averaged Navier-Stokes equations provide the state-of-aft of aerodynamic performance
evaluation. Although a Navier-Stokes calculation requires large computer resources to estimate
wing performances within a reasonable time, the three-dimensional Navier-Stokes equations must
be solved because flows around a wing involve significant viscous effects, such as potential
boundary-layer separations and shock wave/boundary layer interactions in the transonic regime. In
this paper, athree-dimensional thin-layer Reynolds-averaged Navier-Stokes solver will be used to
guarantee an accurate model of the flow field to demonstrate the feasibility of EA methodology.
This code employs total variation diminishing type upwind differencing[17], the lower-upper
symmetric Gauss-Seidel scheme [18], and the multigrid method [19].

3.2 Estimation of required thickness

To estimate the minimum thickness distribution to stand the bending moment due to the spanwise
lift distribution, the wing structure is modeled by a thin walled box-beam as shown in Fig. 3. The
skin panels of the box-beam are considered to shear the bending moment. For the brevity, the lift
distribution is replaced by spanwise concentrated loads. The bending stress at each station is given
by

(2)
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where M represents the moment due to the lift. The second moment of areal is calculated as

3
1 =2819 0= iz,
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The constraint is then given by the local stress to be less than the ultimate shear stress of, say,
Aluminum alloy 2024-T351.

S <sS ultimate (4)
Using Egs. (2) to (4), we obtain the minimum thickness ty, at each segment,
M (5)
1:1 2= 1:min
S ultimate xC >¢2

Following assumptions are made: the thickness of the skin panelsis 2.5[cm] and its ultimate normal
stress is 2.74x10'Tkgf/m?]. The length of the chord at wing root Cret @nd maximum wingspan b/2
are 10[m| and 18.8[ m], respectively.
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Figure 3 Box-beam modeling

3.3 Optimization using evolutionary algorithm

The real-coded ARGA [12] is used for the present optimization. The real-coded ARGA is an EA
that can solve large-scale design optimization problems very efficiently by promoting the
population toward promising design regions during the optimization process. The structured coding
is incorporated to improve EA search ability further. Appropriate coding structure for efficient
recombination is determined in advance by examining interactions between design parameters with
experimental design method [20].

The present EA adopts the elitist strategy [21] where the best and the second best individuals
in each generation are transferred into the next generation without any recombination or mutation.
The parental selection consists of the stochastic universal sampling [22] and the ranking method
[23]. Blended crossover (BLX-0.5) [24] is used for recombination. Mutation takes place at a
probability of 10% and then adds a random disturbance to the corresponding gene up to 10% of the
given range of each design parameter. The population size is kept at 64 and the maximum number
of generations is set to 65. The initial population is generated randomly over the entire design
space.

The main concern related to the use of EAs coupled with three-dimensional Navier-Stokes
solvers for aerodynamic shape designs is the required computational effort. In the present case,
each CFD evaluation takes about 100 min. of CPU time even on a vector computer. Because the
present optimization evaluates 64 x 65 = 4160 design candidates, sequential evolutions would take
almost 7000 h (more than half a year!).

Fortunately, parallel vector computers are now available in many institutions and universities.
In addition, EAs are intrinsically parallel algorithms and can be easily parallelized. One of such
computers is Numerical Wind Tunnel (NWT) [25] located at National Aerospace Laboratory in
Japan. NWT isa MIMD parallel computer with 166 vector-processing elements (PEs) and its total
peak performance and the total main memory capacity are about 280 GFLOPS and 45GB,
respectively. In the present optimization, evaluation process at each generation is parallelized using
the master-dave concept; the grid generations and the flow calculations associated to the
individuals of a generation are distributed into 64 PEs of NWT. This makes the corresponding
turnaround time almost 1/64 because the CPU time used for EA operators are negligible.

To handle the structural constraint, the constrained optimization problem is transformed into
an unconstrained problem as

i 100+L/D if  tet, ()
|

fitness function= min
1(100+L/D) »exp(t, - t

min) Otherwise

where t; and tmin are thickness and minimum thickness at the span station of the maximum local
stress. The exponential term penalizes the infeasible solutions by reducing the fitness function
value. Because some design candidates can have negative L/D, the summation of 100 and L/D is
used.



4. RESULTS
The optimization history of the present EA is shown in Fig. 4 in terms of L/D. During the initial
phase of the optimization, some members had a strong shock wave or failed to satisfy the structural
constraint. However they are weeded out from the population because of the resultant penalties to
the fitness function. The final design has L/D of 18.91 (lift coefficient of 0.2621 and drag
coefficient of 0.01386) satisfying the given structural constraint.
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Figure 4 Optimization history in terms of L/D
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The wing thickness distribution of the design is given in Fig. 5. The minimum thickness
constraint appears at the kink because the inboard sections of the wing have large chord lengths and
alow alarge moment. The design satisfies this structural constraint while minimizing its thickness
distribution to reduce the wave drag.
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Figure 5 Spanwise thickness distribution



Figure 6 compares the span load distribution of the designed wing with a parabola that is
known to give the minimum induced drag when the structural constraint is considered. The design
does not have the parabolic span load distribution but a straight load distribution, which helps to
reduce the bending moment at the inboard of the wing. The thickness distribution for the
corresponding parabolic span load distribution is presented in Fig. 7. This figure shows that a
design that minimizes the induced drag would have 18% thickness-to-chord. Such design would
result in an unacceptably large wave drag associated with a stronger shock wave. This result
indicates the structural constraint imposed a tradeoff between minimizations of induced drag and
wave drag. The present straight span load distribution is a compromise of the tradeoff.
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Figure 6 Spanwise lift distribution
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Figure 7 Comparison of thickness distributions between the present design
and the minimum induced-drag design

The designed airfoil sections and the corresponding pressure distributions at the 0, 33, and
66% spanwise locations are shown in Fig. 8. In the pressure distributions, neither any strong shock
wave nor any flow separation is found. This ensures that the present wing has very little wave drag



and pressure drag. At 33 and 66% spanwise locations, the rooftop, front-loading and rear loading
patterns are observed, which are typical for the supercritical airfoils [12] used for advanced
transport today. The corresponding airfoil shapes are indeed similar to supercritical airfoils.
Overall, these detailed observations of the design confirm that the present design is very close to a
global optimum expected by the present knowledge in aerodynamics.
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Figure 8 Designed airfoil sections and the corresponding pressure distributions

5. SUMMARY

Aerodynamic design optimization of a transonic wing shape for generic transport aircraft is
demonstrated by using the real-coded ARGA coupled with the structured coding. Aerodynamic
performances of the design candidates are evaluated by using the three-dimensional compressive
Navier-Stokes equations to guarantee an accurate model of the flow field. A practical structura
constraint is introduced to avoid an apparent solution of zero thickness wing for low drag in high
speeds. To overcome enormous computational time necessary for the optimization, the computation
is parallelized on NWT.

The designed wing has a fully attached flow and the allowable minimum thickness so that
pressure drag and wave drag are minimized under the present structura constraint. Indeed the
resulting wing appears very similar to advanced wing designs based on supercritical airfoils. The
design also compromises the tradeoff between minimizations of the induced drag and the wave
drag imposed by the structural constraint. These results ensure the capability of the present EA in
handling large-scale design optimizations.
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