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Abstract. In this paper we present an enhanced evolutionary algorithm
(EA) to solve computationally expensive design optimization problems.
In this algorithm we integrate a genetic algorithm (GA) with a local
search method to expedite convergence of the GA. We first use a GA to
generate a population of data by evaluating real functions, then we con-
struct computationally cheap surrogate models based on the available
data. Thereafter, we perform gradient-based local searches on the surro-
gate models in lieu of the real functions. We apply the GA and gradient-
based method alternatively until an optimum is reached. To guarantee
convergence to the original problem, we use a trust region management to
handle surrogate models. We investigate the effects of number of points
used to construct the surrogate model, number of surrogate model con-
structed, and number of local search performed. Our numerical results,
based on two single-objective problems and one multi-objective optimiza-
tion problem, demonstrate the advantages of the hybrid GA over pure
GAs.

1 Introduction

Many real design problems in aerospace and aeronautical fields are often multi-
objective in nature. To solve such problems, traditionally, we need to transform a
multi-objective problem into a series of single-objective problems by introducing
parameters such as weight vectors, ε-vectors, or target vectors [5]. Each set-
ting of these vectors is associated with a particular Pareto-optimal solution. To
find multiple Pareto-optimal solutions, we need to repetitively choose different
settings and solve the resulting single-objective problem. EAs are particularly
suitable for multi-objective optimization problems (MOOPs) because EA’s pop-
ulation approach can be exploited to emphasize all non-dominated solutions in
a population equally and keep an archive of a diverse set of non-dominated
solutions using a niche-preserving operator. This striking feature gives EAs fa-
vorable characteristic for MOOPs because they eliminate the need to convert
a MOOP into multiple single-objective problems and the need to choose differ-
ent settings of parameters favoring certain Pareto-optimal solutions. However,



EAs have some problems in practical applications. Unlike gradient-based meth-
ods, which use derivatives of the objective and constraint functions for a poten-
tial reducing direction, EAs use probabilistic recombination operators to control
the step size and “searching direction” in which only objective and constraint
functions are evaluated. Therefore, the convergence to the optimal solution is
relatively slow, and this becomes particularly severe when a local optimum is
approached. Furthermore, because EAs typically require considerable numbers
of function evaluations to locate an optimal solution, the required CPU time
may hinder any practical application in engineering fields, which is particulary
true when high-fidelity simulations are needed, such as turbomachinery blade
design.

Researchers have proposed numerous approaches to improve the efficiency
of EAs by leveraging their convergence rate. One approach is to incorporate
stochastic EAs with deterministic gradient-based methods. The basic idea is to
resort to gradient-based methods whenever the EA convergence rate is slow. This
strategy takes the advantage of the fast convergence of the gradient-based meth-
ods. Muyl et al. [11] coupled a GA with a BFGS (Broyden-Fletcher-Goldfarb-
Shanno [16]) method to optimize an automobile shape. To further save CPU
time, one can build a surrogate model to replace the computationally expensive
exact model. Liang et al. [10] coupled EAs with response surface methods; Ong et
al. [12] coupled an EA with a feasible sequential quadratic programming (SQP)
solver. These proposed approaches typically decompose the original problem into
a sequence of subproblems confined to a small region of the design space. In each
subregion, a surrogate model is constructed and optimized with gradient-based
methods. These works focus on single-objective optimization.

In this paper we propose a strategy to enhance the EA performance by cou-
pling an EA with a gradient-based method for MOOPs. We implement a real-
coded GA because it is straightforward in solving our real-parameter optimiza-
tion problems. The gradient-based method is a SQP solver [6]. In our approach,
the GA is first used to generate a population of data by evaluating real func-
tions, and then, surrogate models are built. Thereafter, we conduct local search
on surrogate models. The GA and local search are alternately used under a trust-
region framework until an optimum is found. Alexandrov et al. [1] showed that
under certain assumptions, solutions produced from surrogate models under a
trust region framework converge to the optimum of the original problem. By
hybridizing a GA and a gradient-based method under a trust-region framework,
favorable characteristics of both local search and global search are maintained.
The local search determines a faster convergence. The global search assures that
solution produced by an optimization algorithm working with the surrogate mod-
els, started at an arbitrary initial value, will converge to a stationary point or
local optimum for the original problem.

The building blocks of our hybrid approach include a real-coded GA, a SQP
solver, and a surrogate model. The coupling is fulfilled with a trust region man-
agement. Our focus is on aerospace and aeronautical optimization problems, but
this method can be applied to other engineering fields as well. To our best knowl-



edge, this is the first time that hybrid GA is used in multi-objective aeronautical
optimization problem. This paper is organized as follows: we first present the
surrogate model construction, then we present the trust region management. In
the numerical analysis section we validate our method with two single-objective
optimization problems and one multi-objective optimization problem.

2 Surrogate Model

A nonlinear inequality constraint problem in general has the following form:

Minimize: f(x)
Subject to: gi(x) ≤ 0, i = 1, 2, ..., p

xl ≤ x ≤ xu.
(1)

This problem has a set of constraints {gi}p
1, x ∈ Rn is the design variable

vector, and xl and xu are the lower and upper bounds of the design variables,
respectively. In practice, when f(x) and gi(x) are computationally expensive,
instead of directly solving Eq. (1), we solve the following problem:

Minimize: f̂(x)
Subject to: ĝi(x) ≤ 0, i = 1, 2, ..., p

xl ≤ x ≤ xu,
(2)

where f̂(x) and ĝi(x) are the surrogate models of f(x) and gi(x), respectively.
Surrogate models are built to approximate computationally expensive functions;
they are computationally orders of magnitude cheaper while still provide reason-
ably accurate approximation to the real functions. Popular techniques include
response surface methods and Kriging methods.

In constructing surrogate models, because neighboring individuals have more
impact than remote ones, this motivates the use of radial basis functions in
our work. Thin-plate splines (TPS) interpolation [7] is chosen for this purpose.
Suppose (x0,y0) is an arbitrary individual, around which surrogate models will be
constructed, and {xi,yi}m

1 are its closest neighboring points, then the surrogate
model of f(x) can be constructed as follows:

f̂(x) =
m∑

j=1

αj ||x− xj ||2log||x− xj ||. (3)

{αj}m
1 denote the vector of weights, which can be determined by solving a system

of linear equations. Substituting {xi,yi}m
1 into Eq. (3) we get a linear system of

equations:

m∑

j=1

αj ||xi − xj ||2log||xi − xj || = yi, i = 1, 2, ..., m. (4)



{αj}m
1 can be determined by solving Eq.(4). Micchelli proved that Eq. (4) has a

unique solution when the set of neighboring points {xi, yi}m
1 are distinct. Param-

eter m determines the number of points used to construct the surrogate model, it
plays an important role in the overall performance of the hybrid method. We will
discuss that in the numerical analysis part. We notice that the resulting linear
system of equations are ill-conditioned when some neighboring points are close
to each other. This scenario becomes more frequent when a local optimum is ap-
proached. To avoid unnecessary numerical error, double-precision computations
are recommended to solve Eq. (4). Surrogate models for constraint functions can
be formulated in the same way.

3 A Trust Region Management

The essential ingredients of our approach include a real-coded GA, a gradient-
based optimizer, and a surrogate model. A trust-region framework is used to
manage surrogate models to assure that the obtained solution from the surro-
gate model converges to the original problem. Classical trust region algorithm
uses a quadratic model based on the Taylor series expansion, which produces
a good approximation confined in a small neighborhood. In engineering prac-
tice, we might use other surrogate models which have better approximations in
a larger neighborhood. Previous work in this field has exclusively concentrated
on whether or not the optimization technique would converge to a solution of
the surrogate model, rather than the original problem. Alexandrov et al. [1] pre-
sented an approach which inherits the convergence properties of classical trust
region algorithms. Under simple conditions their approach assures that the solu-
tion produced by using the surrogate models converge to a local minimum of the
original problem regardless of the initial condition. Rodriguez et al. [15] extended
this analysis to nonlinear programming problems with general constraints by us-
ing augmented Lagrangian methods. Giunta and Eldred [8] and Ong et al. [12]
retained separate objective and constraint functions in their surrogate model
application, which we will follow here. Our strategy is outlined as follows:

1. Generate a database with a GA by evaluating computationally expensive
exact models.

2. Proceed by building surrogate models and perform a sequence of K local
searches based on the surrogate models under the trust region framework.

3. Return to Step 1 if further iteration is needed.

In step 2 we solve a series of problems with the following form:

Minimize: f̂k(xk
c + s)

Subject to: ĝk
i (xk

c + s) ≤ 0, i = 1, 2, ..., p,
||s|| ≤ δk.

(5)

In the above problem, xk
c is the starting point for the k-th local search. Surrogate

models f̂k and ĝk
i are constructed based on the m neighboring points around



xk
c ; s denotes the prospective descending step size and direction; δk is the trust

radius; the optimal solution at the k-th search is denoted as xk
lo. After performing

optimization on the surrogate models, we have recourse to the real functions to
recalibrate trust radius by comparing the actual and predicted improvements,
and then we continue our local search with surrogate models. In principle, if
the surrogate models are accurate enough to predict the improvement of the
exact models, we enlarge the trust radius; or if the surrogate models are not
accurate, either no improvement is made or the improvement is not as much as
the predicted, then we decrease the trust radius; otherwise, if reasonable but
not great improvement is made, we keep the trust radius[1]. The trust radius
is updated in an dynamic way based on a measure indicating the accuracy of
the surrogate models. For single-objective optimization problem, this measure
of merit is designated ρk and is calculated as follows:

ρk = min(ρk
f , ρk

gi), for i = 1, 2, ..., p (6)

where

ρk
f =

f(xk
c )− f(xk

lo)

f̂k(xk
c )− f̂k(xk

lo)
, ρk

gi =
gi(xk

c )− gi(xk
lo)

ĝi
k(xk

c )− ĝi
k(xk

lo)
. (7)

Intuitively we can see that the larger the ρk is, the more accurate the surrogate
models are, and we can increase our trust radius; otherwise, we need to decrease
it to increase accuracy. Mathematically, the trust region size is updated based
on the value of ρk:

δk+1 = 0.25δk if ρk ≤ 0.25,
= δk if 0.25 < ρk < 0.75,
= ξδk if ρk ≥ 0.75,

(8)

where ξ = 2 if ||xk
lo − xk

c ||∞ ≥ δk, or ξ = 1 if ||xk
lo − xk

c ||∞ < δk. With this
measure we can update the stating point of the next iteration as follows:

xk+1
c = xk

lo if ρk > 0,
= xk

c if ρk ≤ 0.
(9)

In practice, we only need to solve Eq. (5) approximately. The step size is ac-
ceptable if ||s|| ≤ αδk for α > 1 independent of k [1]. In our work, we set δ as
the maximal distance between the starting point xk

c and the neighboring points,
with which the surrogate model is constructed.

For multi-objective optimization problems, to construct the surrogate model,
we reformulate the MOOP as a single objective problem by maintaining only one
objective function while putting the others as constraints with user-specified
values. This approach in the literature is called the ε-constraint method. We
notice that for MOOPs Eq. (6) is no long a very good measure of merit for
surrogate models, so we propose another approach. Basically we compare the
local search solution f(xk

lo) with the existing solutions, if it is located on the
Pareto-optimal front, we claim improvement is made.



For unconstraint problems, to ensure convergence, we enforce consistency
conditions between the original functions and the surrogates. Specifically, the
following conditions must hold for both the objective and constraint functions:

y(xk
c ) = ŷ(xk

c ) (10)
∇y(xk

c ) = ∇ŷ(xk
c ) (11)

The first condition assure surrogate model has a good approximation near xk
c ,

which is guaranteed when we construct the surrogate model with TPS interpo-
lation. However, the second condition is not easy to satisfy because it is compu-
tationally prohibitive to evaluate the gradient with finite difference methods if
the real function is not known.

4 Numerical Tests

We use a real-coded GA in the proposed approach. A blend crossover (BLX-α)
operator is used with a value of α=0.5. In our computations, all design variables
are scaled to [0 1]. We choose uniform mutation operator which adds a uniform
random number to the parent solution at a probability of pc:

yi = xi + (ri − 0.5)∆i, (12)

where ri is a random number, ∆i is the user-defined maximum perturbation
allowed in the i-th decision variable. We set pc=0.1 and ∆i = 0.1 in our com-
putations. To ensure a monotonic improvement for the GA, we adopt the elitist
strategy [4] in which some of the best individuals are copied directly into the next
generation without applying any evolutionary operators. For single objective
optimization, sorting is based on the value of the objective function; for multi-
objective optimization, we rank solutions based on Goldberg’s non-dominated
sorting procedure [17]. To maintain a uniform distribution on the Pareto-optimal
front, we use fitness sharing [9] in the multi-objective optimization. Local search
is performed with an SQP solver available in commercial optimizer DOT [6].

The first problem we test is the Rosenbrock function with two variables,

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2, 2 ≤ x1, x2 ≤ 2. (13)

This function has a minimum zero locating at (x1, x2) = (1, 1). To provide a basic
comparison, we first minimize the Rosenbrock function by applying the pure GA.
We set the population size as 20. The convergence history is plotted in Fig. 1.
The function evaluation records the number that real function is computed in
pure GA. After 800 function evaluations, GA converges to a minimum of 1.0e−6.
Further iterations do not significantly improve the result.

Before we discuss the computational results with the hybrid method, we
study how many local searches do we need to perform on each surrogate model.
Generally speaking, to maintain the advantages of both GAs and gradient-based
methods in the hybrid method, we need to keep a balance between the local



search and global search. On the one hand, gradient-based methods have a fast
convergence but usually are stuck in a local optimum; on the other hand, GAs
have a slow convergence but enable to identify a global optimum. In general,
we do not construct surrogate model around each points but only around cer-
tain selected points. We explain the reason with a 1D cartoon problem shown
in Fig. 2. Four individuals are initially sampled. If we constructed surrogated
models around each of these four points, we properly obtain the same function
as plotted in Fig. 2. Performing local searches on the surrogate model starting
from the four points will converge to the same solution locating between 8 and
10. The global minimal optimal will never be found. To avoid this, we usually
divide the whole data points into groups, with each group containing ISKIP
individuals. In each group, only one surrogate model is built among the ISKIP
points. We compare the effects of ISKIP in Fig. 1. For the hybrid approach, the
function evaluations include those computed in the pure GA and in the eval-
uation of Eq. (6). By ISKIP = 1 we perform local search on each individual,
and we get a premature convergence; ISKIP = 5 produces some improvement;
ISKIP = 10 gives the best result, which not only has a faster convergence rate
but gives a better solution than the pure GA. There is no explicit expression
of parameter ISKIP, which depends on the function properties, dimensionality,
and population size in GA. Our experiences with other optimization problems
indicate that ISKIP = 10 is a good choice. We test this function with different
initial conditions. In the other four trials with different initial conditions the
hybrid GA outperforms the pure GA.

In constructing surrogate models, our interest is not to fit an exact represen-
tation of the known training data itself but rather to build a statistical model
to make good predictions for new inputs. Parameter m is the number of neigh-
boring points used to construct the surrogate model. From Eq. (3) we know
that m determines the complexity, or flexibility of surrogate models. A small m
means an inflexible surrogate model, while one with large m means a flexible
model. An inflexible model usually have a large bias, while a flexible model have
a large variance (oscillation). The best situation is obtained when we have the
best compromise between the conflicting requirement of small bias and small
variance [2]. This can be achieved by adjusting the value of m depending on
the training data distribution. However, there is no comprehensive theory to
choose such an optimal value. A heuristic approach is to determine m based on
the number of design variables. We compare results with different values of m
in Fig. 3. Among the three solutions, m = 4 gives the best result, while the
global surrogate model, which is constructed with all the available points, has
the worst. A global model generally has the least bias but may have the largest
variance because of the overfitting. This observation is consistent with that of
Ong et al. [12]. In our tests we set m = 2n, which produces good results.

As outlined in our trust region management, parameter K controls the num-
ber of local searches performed on a surrogate model before we have recourse to
real models. Excessive local searches may result in a premature convergence to
a local optimal. Fig. 4 illustrates the effect of K on the convergence history. We



find K = 1 gives the best result. In the following tests we set up the parameters
as ISKIP = 10, m = 2n, and K = 1.
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In the second problem we minimize the Rastrigin function, which is com-
monly used in the global optimization literature. The Rastrigin function is de-
fined as follows:

Minimize 10n +
∑n

i=1[x
2
i − 10 cos(2πxi)],

Subject to: −5.12 ≤ xi ≤ 5.12, i = 1, 2, ..., n.
(14)

This function has a highly bumpy surface with many local optima. Fig. 5 shows
the plot of a two-dimensional Rastrigin function. The function has a global
minimal value of zero at xi = 0. We test our proposed scheme with n = 20.
We set the population size as 100. Here we are interested to know what are
the advantages of the hybrid GA for solving this problem. We limit the total



function evaluations to 10,000. To start the local search, we let GA run five
generations to generate enough data in the pool before we switch to the local
search. The standard GA approaches 16 after 10,000 function evaluations, while
the hybrid method converges to 8 after about 4,000 function evaluations. Other
trials with different initial conditions show similar results. This test demonstrates
advantages of the hybrid method for high-dimensional problems.
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In the third problem, we apply our approach to the design of a single-stage
centrifugal pump. This problem was studied by Oyama and Liou [13] with a
real-coded GA. The objectives are to maximize the total head and to minimize
the input power at a design point. These objectives are competing with each
other, and therefore, we have Pareto-optimal solutions. The baseline design has
a shaft rotative speed of 5,416.7 rpm, total temperature of the fluid entering the
pump of 29.6oC, total pressure of the fluid entering the pump of 35,200kgf/m2,
and a mass flow rate of 85.67 kg/s.

In the single-stage design, there are 11 design variables. They are the rotor
leading-edge tip radius Rtip1, rotor trailing-edge radius R2, volute tongue radius
R3, blade span at trailing edge B2, blade span at volute tongue B3, axial length
of the blade at the rms diameter S, number of blades Zn, blade thickness thk,
blade trailing-edge angle at the hub, rms radius, and tip (βhub, βmid, βtip). The
design spaces are tabulated in Table 1.

We set the population size as 120 at each generation. The computation ter-
minates after 10,000 function evaluations. The result is shown in Fig. 7 together
with the original design. The comparison between a GA and a hybrid GA is not
as straightforward as the single objective optimization because the final solution
is a Pareto-optimal front. Suppose we obtain q solutions on the Pareto-optimal
front in our final result, we can evaluate the performance of our hybrid method



Table 1. Design parameter spaces for the centrifugal pump design problem

Design Variables R1,tip in. R2, in. R3, in. B2, in. B3, in.

Lower bound 3.40 5.00 5.60 0.70 0.85

Upper bound 4.00 5.60 6.20 0.85 1.00

Design Variables S, in. βhub, Deg. βrms, Deg. βtip, Deg. thk, in Zn2

Lower bound 3.70 25.0 25.0 25.0 0.03 4

Upper bound 4.30 45.0 45.0 45.0 0.10 30

based on the generational distance G [18]:

G =

√∑q
i=1 d2

i

q
(15)

where di is the distance between a Pareto-optimal solution and its nearest point
at the true Pareto-optimal front. a true Pareto-optimal front is not available, we
approximate it by using a GA with a population size of 400 and generation size
of 300.

Fig 8 depicts the generational distance of the standard GA and the hybrid
GA. The surrogate model starts from the sixth generations. The standard GA
has a quicker convergence at the early stage and then it slows down after 4,000
function evaluations. The hybrid scheme catches up with the pure GA after 4,500
function evaluations. The superiority continues until the end. The convergence
rate also slows down after about 6,000 function evaluations. Other computa-
tions with different initial condition also confirm the advantages of our hybrid
approach.
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Our proposed method aims at solving computationally expensive real prob-
lems in aerospace and aeronautical fields. In such problems, the CPU time used
to construct surrogate models and perform local searches are much less than



that used for real function evaluations. Therefore, we can assume that the total
CPU time is exclusively determined by the number of function evaluations. By
that token, the hybrid approach requires less CPU time than the pure GA.

5 Conclusions

An enhanced evolutionary algorithm was proposed to solve computationally ex-
pensive optimization problems. This algorithm hybridizes a GA with a local
search method. Numerical tests demonstrated that this algorithm maintains the
advantages of both local search and global search algorithms, i.e., a fast conver-
gence rate and a global optimal property. Detailed studies were also conducted
on the impacts of surrogate model accuracy, local search frequency, and local
search number.
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