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A new optimization approach for robust design, design for multi-objective six sigma
(DFMOSS) has been developed and applied to robust aerodynamic airfoil design for Mars
exploratory airplane. The present robust aerodynamic airfoil design optimization using
DFMOSS successfully showed the trade-off information between maximization and robust-
ness improvement in aerodynamic performance by a single optimization run without careful
input parameter tuning. The obtained trade-off information indicated that an airfoil with
a smaller maximum camber improves robustness of lift to drag ratio, and that with a larger
curvature near the shock wave location improves robustness of pitching moment against
the variation of flight Mach number.

I. Introduction

In real-world engineering designs, performance of a design may be very different from its expected value
due to errors and uncertainties in design process, manufacturing process, and/or operating condition. A

typical example of such critical situations is airplane wing design. It is well known that aerodynamic per-
formance of an airplane is very sensitive to the wing shape and flight condition, and inevitable uncertainties
such as wing manufacturing errors and wind variations may lead to drastic deterioration in aerodynamic
performance of an airplane. In the airplane wing design, therefore, it is required not to use the conventional
design optimization approach considering only optimality of performance at the design point, but to use
the robust design optimization approach considering both optimality and robustness of performance against
any uncertainties. Especially, in the wing design for future Mars airplane1–3 which has recently attracted
attention as a new approach to explore Mars in spite of conventional orbiting satellites and rovers, the use of
robust design optimization approach is much more required because the Martian atmosphere has very large
wind variations.4, 5

Indeed, improvements in optimality and robustness are usually competing in real-world design problems.
Therefore, not a single, but multiple robust optimal solutions actually exist, such that finding these compro-
mised solutions and revealing the trade-off information between optimality and robustness are both objectives
for robust design optimization. The new acquired knowledge can aid the upper-level decision maker to pick
one solution from the compromised solutions, together with an additional design consideration.

Up to the present, some robust optimization approaches have been developed and applied to engineering
design problems in order to reveal realistic and practical design information.6–8 Among these, the design
for six sigma (DFSS)6 is one of the most popular robust optimization approaches, due to its simple and
practical formulation. DFSS has been successfully applied to various robust optimization problems in various
engineering fields.9, 10 However, the DFSS needs careful setting of input parameters, and has difficulty in
revealing trade-off information between optimality and robustness of design because it is based on a single-
objective optimization method, as is the approach proposed by Deb and Gupta.7 Another alternative for
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robust optimization is the performance measure approach (PMA),8 proposed by Youn and Choi. Although
effective in terms of accuracy and stability, this method probably needs a more intuitive formulation before
it becomes popular in the engineering design field for real-world applications.

Objectives of this paper are to propose a new robust design optimization approach “design for multi-
objective six sigma (DFMOSS)” by combining the ideas of DFSS and multi-objective evolutionary algorithm
(MOEA),11 and to carry out the robust aerodynamic airfoil design optimizations for future Mars airplane
by using the DFMOSS coupled with computational fluid dynamics (CFD) simulation. In this paper, two
robust aerodynamic airfoil design optimizations are carried out; the optimization considering robustness of
lift to drag ratio against the variation of flight Mach number, and that considering robustness of pitching
moment constraint against the variation of flight Mach number. In each robust optimization, the DFMOSS
is investigated in terms of efficiency and capability of revealing trade-off information between optimality and
robustness of performance, and practical airfoil design information about the improvement in both optimality
and robustness of aerodynamic performance against the variation of flight Mach number is suggested for
future Mars airplane.

II. Design for Six Sigma

Design for six sigma (DFSS)6 is based on the “six sigma” concept, which was originally established as a
measure of excellence for business processes. The aim is to achieve a process with such a small dispersion
that the range of ±6σ (σ: standard deviation) around the mean value μ is included in an acceptable range
for the performance parameter. The level of dispersion can be defined as “sigma level n”, as shown in Fig. 1
where larger sigma level indicates smaller dispersion. In the context of robust design optimization, smaller
dispersion translates to a more robust characteristic.
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Figure 1. Characteristics of sigma level n.

Consider a single-objective non-constrained optimization problem where the value of objective function
f(x) of design variable x must be minimized as follows:

Minimize: f(x) (1)

In robust design optimization using DFSS, Eq. 1 is rewritten to the problem where the weighted summation
of the mean value μf and the variance σf

2 of the objective function must be minimized as follows:

Minimize: wμμf + wσσf
2 (2)

where wμ and wσ are user-specified weighting factors of μf and σf
2, respectively. μf and σf are estimated

by sampling x following its probability distribution and evaluating f(x) at each sample point. In DFSS, the
following inequality constraints are specified in advance to achieve the expected sigma level quality of the
obtained solution, as shown in Fig. 1.

Subject to: μf − nσf ≥ LSL
μf + nσf ≤ USL

(3)
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Optimization using single-objective approach
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where n represents user-specified sigma level, and LSL and USL are user-specified lower and upper objective
function limits, respectively.

Figure 2 illustrates the flowchart of robust optimization using DFSS. First, parameters such as weighting
factors wμ and wσ, sigma level n, and LSL/USL are pre-specified by the user, and then it proceeds to
the optimization block. In this block, μf and σf of f(x) at sample points around x are evaluated, and
wμμf +wσσf

2 is dealt with as one objective function. Then, μf−nσf−LSL(≥ 0) and/or μf +nσf−USL(≤ 0)
are evaluated as two constraint functions. x for the next step is reproduced based on the evaluated objective
and constraint functions, and this optimization process is iterated until x has converged. This single-objective
optimization can be carried out by using any single-objective optimization approach.

The DFSS has some limitations as follows. First, it is necessary to pre-specify the weighting factors
wμ and wσ carefully, even though it is difficult for the user to pre-specify values for weighting factors
appropriately because the trade-off information is still unknown. Also, it is necessary to pre-specify an
appropriate sigma level n, although essentially, the sigma level satisfying Eq. 3 is known only after an
optimization run. Therefore, users must pre-specify the sigma level without any information, while a robust
optimal solution may not even be obtainable at the pre-specified value of sigma level. Second, only one
robust optimal solution can be obtained in a single optimization run, for the DFSS operates according to
the single-objective function given by Eq. 2. As a result, many optimization runs with different values of
weighting factors and sigma level must be performed by the user in order to obtain multiple robust optimal
solutions, which shall then reveal the trade-off relation between optimality and robustness of performance.
Furthermore, the trade-off relation between optimality and robustness may not be derived even after many
optimization runs (e.g. if the obtained multiple optimal solutions distribute only locally).

III. Design for Multi-Objective Six Sigma

The idea of design for multi-objective six sigma (DFMOSS)12 is to incorporate multi-objective evolution-
ary algorithm (MOEA)11 into DFSS in order to overcome those limitations mentioned above. In DFMOSS,
the mean value (μf ) and the standard deviation (σf ) of the objective function f(x) are dealt with as multiple
objective functions and thus minimized separately (for f(x) minimization problem) as follows:

Minimize: μf

σf

(4)

μ
f

σ f

Sol. C

Sol. A

Sol. B

μ –n
σ  ≥

 L
SL

f

f

μ +nσ  ≤ USL

f

f

n = 3
n = 6

Satisfying Sigma Level n
Sol. D

Figure 4. Post-evaluation of sigma level n.

Figure 3 illustrates the flowchart of robust optimization us-
ing DFMOSS. There is no need to pre-specify weighting factors
wμ and wσ before optimization as in DFSS (Fig. 2), because
DFMOSS deals with the multi-objective optimization problem
given by Eq. 4. There is no need to pre-specify sigma level n
either, because DFMOSS does not consider the constraint on
sigma level n given by Eq. 3 during the optimization process.
The sigma level n satisfying Eq. 3 can be evaluated from the
robust optimal solutions in the post-processing, as shown in
Fig. 4 (this will be described in the next paragraph). During
the optimization process itself, multiple solutions (individuals)
x1, x2, · · · , xN are dealt with simultaneously using MOEA. For
each individual i = 1, 2, · · · , N , μf i and σf i are evaluated as
two separate objective functions from f(x) at the sample points
around xi. Better solutions are selected based on the Pareto-
optimality concept between μf i and σf i for i = 1, 2, · · · , N .
Solutions x1, x2, · · · , xN for the next step are reproduced by
crossover and mutation from the selected solutions. This optimization process is iterated until the trade-off
relation between μf and σf has converged, and multiple robust optimal solutions are obtained.

The post-evaluation of sigma level n is illustrated in Fig. 4, where four robust optimal solutions (A, B,
C and D) obtained by a DFMOSS optimization were taken as example. The shaded region indicates the
area satisfying the constraint of 6σ robustness quality, i.e. points included in this region (solution C) have
robustness quality equal to or above 6σ. Points outside this region (solutions A, B and D) do not satisfy the
constraint of 6σ robustness quality. Solution B for instance, is included in the area satisfying the constraint
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of 3σ robustness quality, thus inferior to solution C in terms of robustness. Therefore, the satisfied sigma
level of each obtained robust optimal solution can be evaluated in a flexible sense, considering the trade-off
between optimality and robustness of design.

IV. Robust Aerodynamic Airfoil Design for Future Mars Airplane

IV.A. Problem Definition

Figure 5. NASA’s “Airplane for Mars Explo-
ration (AME).”1

Figure 6. Definition of airfoil configuration
based on the B-spline curves.

In this study, robust aerodynamic airfoil design optimizations
against the variation of flight Mach number for a future Mars
airplane are carried out to investigate the efficiency and ca-
pability of DFMOSS to reveal trade-off information between
optimality and robustness of aerodynamic performance. The
cruising flight condition of NASA’s “Airplane for Mars Explo-
ration (AME)”,1 shown in Fig. 5, is adopted as the present
design point; Reynolds number based on root chord length
Re = 1.0 × 105, freestream Mach number M∞ = 0.4735, and
the angle of attack α = 2.0 [deg]. In addition, it is assumed that
M∞ disperses around the design point of 0.4735 in a normal
distribution with a standard deviation of 0.1. Here, the value
of 0.1 as the standard deviation of M∞ is nearly equal to the
daily and seasonal variations of about 22 m/s in the speeds of
westerly winds at the altitude of several kilometers over Mars,4

where the airplane is assumed to fly. In this study, two robust
aerodynamic airfoil design optimizations for future Mars air-
plane are carried out; Case 1: considering robustness of lift to
drag ratio L/D (L is lift and D is drag), and Case 2: con-
sidering robustness of pitching moment coefficient constraint
|CM p| ≤ 0.13 (CM p = Mp/(1

2ρ∞u∞2Sref cref ) is pitching mo-
ment coefficient, Mp is pitching moment around 25 % chord
position, ρ∞ is freestream density, u∞ is freestream velocity,
Sref is the wing area and cref is the root chord length). Case 1
aims at finding the airfoil configuration which can assure the
expected flight range, and Case 2 aims at finding one which can
assure controllability of pitching motion by its horizontal tail
wing when the flight Mach number disperses widely around its
design point.

In both cases, airfoil configuration is defined by the B-spline
curves with three fixed points corresponding to the leading and
trailing edges and six control points whose coordinates can be
specified flexibly, as shown in Fig. 6 (here, c is the airfoil chord length). The design variables are chordwise
(x) and vertical (y) coordinates of the six control points, therefore the number of design variables is twelve.
Such definition based on the B-spline curves has some advantages; the second-order derivative of coordinate
along the B-spline curves is continuous, various airfoil configurations can be expressed, and definition of
initial design space is intuitive.13 The structural constraint on airfoil thickness is not considered because we
want to discuss an aerodynamic effect purely in the present study.

IV.B. Case 1: Considering Robustness of Lift to Drag Ratio

The present robust optimization problems using DFSS and DFMOSS are defined, respectively, as follows:

• Robust optimization using DFSS

When M∞ disperses around 0.4735 following the normal distribution with its standard deviation of
0.1,

– Minimize: − wμ · (mean value of L/D) + wσ · (variance of L/D)
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– Subject to: (mean value of L/D) − n · (standard deviation of L/D) ≥ 42

• Robust optimization using DFMOSS

When M∞ disperses around 0.4735 following the normal distribution with its standard deviation of
0.1,

– Maximize: mean value of L/D

– Minimize: standard deviation of L/D

These robust optimization problems are solved by using the DFSS based on a single-objective EA (SOEA),
and the DFMOSS based on a MOEA, respectively. Fitness values are evaluated by using a Pareto-ranking
method,14 a fitness sharing,11, 14 and the Michaleswicz’s nonlinear function15 in DFMOSS while a standard
ranking method and the Michaleswicz’s nonlinear function are used in DFSS. Parents are selected by the
stochastic universal sampling (SUS).16 Children are reproduced by the blended crossover (BLX-0.5) method17

and uniform mutation11 set at a rate of 20 % and maximum perturbation range of 10 % of the design space.
The alternation of generations is performed by the best-N selection.18, 19 Population size and number of
generations are 64 and 100, respectively. The statistical values of objective function such as μf and σf

against dispersive design variables x = [x1, x2, · · · , xM ]T are estimated by the second-order Taylor’s series
expansion approach given as

μf = f(µx) +
1
2

M∑
i=1

∂2f

∂xi
2
σxi

σf =

√√√√ M∑
i=1

(
∂f

∂xi

)2

σxi
2 +

1
2

M∑
i,j=1

(
∂2f

∂xi∂xj

)2

σxi
2σxj

2

(5)

where µx is a vector of user-specified mean values of x, and σxi is user-specified standard deviation of the
i-th dispersive design variable. The first and the second derivatives of f(x) with respect to xi in Eq. 5
are evaluated by central differencing. The present dispersive design variable corresponds to the flight Mach
number M∞, therefore, M = 1, x = M∞, μx = 0.4735 and σx = 0.1, and μf and σf are estimated from f(x)
evaluated at three conditions x = M∞ = 0.3735, 0.4735 and 0.5735.

In the robust optimization using DFSS, the sigma level n is set to 3σ, and the constraint on sigma
level n is dealt with by using the Pareto-optimality-based constraint-handling (PBCH) technique.20 Three
optimization runs using DFSS with different weighting factors (wμ : wσ = 1 : 10, 1 : 1 and 10 : 1) are
performed. In the robust optimization using DFMOSS, on the other hand, only one optimization run is
performed without any pre-specification of weighting factors and sigma level. Here note that computation
time taken by one optimization run using DFSS is nearly equal to that using DFMOSS. This means that
three present robust optimization runs using DFSS take about three times as much total computation time
as one present robust optimization run using DFMOSS.

Aerodynamic performance of an airfoil is evaluated by computational fluid dynamics (CFD) simulation.
The governing equations for CFD simulation are two-dimensional Farve-averaged compressible thin-layer
Navier-Stokes equations. The LU-ADI factorization algorithm21 is used for the time integration. The inviscid
terms of numerical fluxes are evaluated by the SHUS scheme.22 In the inviscid terms, high-order accuracy
is obtained by the third-order upwind-biased MUSCL interpolation23 based on the primitive variables with
van Albada differentiable limiter.24 The viscous terms are evaluated by the second-order central differencing,
and the turbulent viscosity is modeled by the Baldwin-Lomax algebraic turbulence model.25 In the present
study, C type grid as shown in Fig. 7 is used. The number of grid points is 251 in the direction around the
airfoil (211 points over the airfoil surface), 51 in the direction normal to the airfoil surface, and the total
number of grid points is 12,801.

The computational time required for one evaluation of aerodynamic performance of an airfoil using the
CFD simulation is about five minutes with one processor of NEC SX-6 computing system owned by the
Institute of Space and Astronautical Science (ISAS) of Japan Aerospace Exploration Agency (JAXA). In
the present study, the optimizer distributes the multiple evaluators corresponding to the multiple individuals
of EA into 32 processors of this computing system in parallel. Therefore, the total computation time required
for one present robust aerodynamic design optimization run using DFMOSS can be reduced to about 56
hours, while it takes about 135 hours to perform the present three robust optimization runs using DFSS.
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Figure 7. Grid distribution.

Figure 8. Comparison of robust optimal solu-
tions obtained through DFSS and DFMOSS in
Case 1.

Figure 8 compares the robust optimal solution distributions
(standard deviation of L/D against mean value of L/D) ob-
tained through DFSS and DFMOSS. The DFSS found three
robust optimal solutions with more than 3σ robustness qual-
ity. However, these solutions distribute narrowly and sparsely.
This indicates that the DFSS has lack in capability of reveal-
ing global trade-off relation between optimality (mean value
of L/D) and robustness (standard deviation of L/D), and the
DFSS requires more optimization runs with different combi-
nations of weighting factors to obtain more detailed trade-
off information. Fortunately, in the present optimizations us-
ing DFSS, three robust optimal solutions can be obtained be-
cause the pre-specified value of sigma level as 3σ is appropri-
ate by chance. However, it is not always guaranteed for the
DFSS to obtain the robust optimal solutions according to pre-
specification of sigma level. On the other hand, the DFMOSS
found multiple (total eighteen) robust optimal solutions dis-
tributing globally and uniformly in the design space by a single
optimization run. From this robust optimal solution distribu-
tion obtained through DFMOSS, global trade-off information
between optimality and robustness can be understood easily;
e.g., the maximum sigma level of L/D of the obtained solu-
tions is more than 6σ by the post-evaluation when the lower
specification limit of L/D is set to 42, and the standard devia-
tion of L/D increases drastically when the mean value of L/D
becomes larger than 44.5. In the present case, the robust op-
timization using DFSS found better robust optimal solutions
(located in lower right in Fig. 8) than that using DFMOSS.
This is because the DFMOSS searched an unexpectedly larger
design space, i.e., producing unpractical solutions with good
robustness but extremely bad optimality of L/D. However,
such situation can be avoided easily by adding some constraints
which eliminate unpractical design space.

Hereafter, three robust optimal solutions with 1σ, 3σ and
6σ robustness qualities of L/D obtained through DFMOSS (shown by closed circles in Fig. 8) are compared
and discussed. First, Fig. 9(a) shows the histories of L/D against M∞ at α = 2.0 [deg] of these three robust
optimal solutions. In the robust optimal solution with 1σ robustness quality, L/D decreases drastically with
an increment in M∞, and it falls below its lower specification limit of 42 at high M∞. On the other hand, the
robust optimal solution with larger sigma level has slightly smaller L/D at the design point M∞ = 0.4735,
but more stable characteristics keeping large L/D against the increment in M∞. These results prove that
the present robust aerodynamic design optimization using the DFMOSS could actually find the multiple
airfoil designs with various robustness qualities of L/D against the variation of M∞ by a single optimization
run.

Next, Fig. 9(b) shows the airfoil configurations of these three robust optimal solutions with 1σ, 3σ and
6σ robustness qualities obtained through DFMOSS. It indicates that maximum camber is one of the major
trade-off factors between L/D and robustness improvements. The reason is that an airfoil with a smaller
maximum camber realizes a smaller increment in pressure drag due to shock wave, and eventually improves
the robustness in L/D against the increment in M∞.

IV.C. Case 2: Considering Robustness of Pitching Moment Constraint

The present robust optimization problems using DFSS and DFMOSS are defined, respectively, as follows:

• Robust optimization using DFSS

When M∞ disperses around 0.4735 following the normal distribution with its standard deviation of
0.1,
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(a) L/D histories against M∞. (b) Airfoil configurations.

Figure 9. Three robust optimal solutions obtained through DFMOSS in Case 1.

– Maximize: mean value of L/D

– Subject to: |mean value of CM p| + n · (standard deviation of CM p) ≤ 0.13

• Robust optimization using DFMOSS

When M∞ disperses around 0.4735 following the normal distribution with its standard deviation of
0.1,

– Maximize: mean value of L/D

– Maximize: n = − |mean value of CM p|−0.13

standard deviation of CM p

In both robust optimizations, the following constraint is considered at the design point M∞ = 0.4735:

• Subject to: |CM p| ≤ 0.13

Case 2 corresponds to the optimization that considers the robustness in constraint function (|CM p| ≤ 0.13)
violation, while the optimization in Case 1 considers the robustness in objective function (L/D). Therefore,
the formulation of robust optimization problem in Case 2 is also slightly different from that in Case 1.
However, Case 2 is similar to Case 1 as DFSS needs the pre-specification of sigma level n and deals with the
single-objective optimization problem, while DFMOSS deals with the multi-objective optimization problem
with separate objective functions corresponding to optimality (mean value of L/D) and robustness (sigma
level of |CM p| ≤ 0.13).

The optimizer and the CFD solver used in Case 2 are the same as those used in Case 1. In the robust
optimization using DFSS, three optimization runs with different sigma level (n = 1σ, 3σ and 6σ) are
carried out. In the robust optimization using DFMOSS, only one optimization run is performed without
pre-specification of sigma level n (n can be derived from the mean value and the standard deviation of CM p

which are evaluated during optimization process).
Figure 10 compares the robust optimal solution distributions (sigma level of |CM p| ≤ 0.13 against mean

value of L/D) obtained through DFSS and DFMOSS. The DFSS found three robust optimal solutions
corresponding to pre-specified sigma levels (1σ, 3σ and 6σ), respectively. However, these solutions distribute
sparsely. Therefore, it can be said that the DFSS requires more optimization runs with different sigma
levels to obtain more detailed trade-off information between optimality (mean value of L/D) and robustness
(sigma level of |CM p| ≤ 0.13), which is similar to the result in Case 1. On the other hand, the DFMOSS
found multiple (total forty) robust optimal solutions distributing globally and uniformly in the design space
by a single optimization run. In addition, the DFMOSS found the greatly robust optimal solutions which
exceeded far more than the maximum pre-specified sigma level as 6σ successfully. These indicate that the
DFMOSS has an excellent capability of finding robust optimal solutions.
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Figure 10. Comparison of robust optimal solu-
tions obtained through DFSS and DFMOSS in
Case 2.

Hereafter, three robust optimal solutions with 1σ, 4σ and
8σ robustness qualities of |CM p| ≤ 0.13 obtained through DF-
MOSS (shown by closed circles in Fig. 10) are compared and
discussed. First, Fig. 11(a) shows the histories of CM p against
M∞ at α = 2.0 [deg] of these three robust optimal solutions.
In the robust optimal solution with 1σ robustness quality, CM p

is larger than its lower limit of −0.13 at the design point
M∞ = 0.4735, but CM p falls below −0.13 and the constraint
|CM p| ≤ 0.13 is not satisfied at high M∞. On the other hand,
the robust optimal solutions with larger sigma level has slightly
more stable characteristics of CMp against an increment in M∞
and its history of CMp against M∞ shift upper from −0.13 to
satisfy the constraint |CM p| ≤ 0.13 even at high M∞. These
results indicate that the robust aerodynamic design optimiza-
tion using the DFMOSS could actually find the multiple designs
with various robustness qualities of CMp against the variation
of M∞ by a single optimization run.

Next, Fig. 11(b) shows the airfoil configurations of these
three robust optimal solutions with 1σ, 4σ and 8σ robustness qualities obtained through DFMOSS. It is
seen that the airfoil is folded down more greatly at about 15 % chord position, corresponding to the location
of shock wave occurring at higher M∞, as the sigma level becomes larger. Such an airfoil suppresses the
backward movement of shock wave, and eventually realizes smaller variation, i.e., more robust characteristic
of CM p against the increment in M∞.

(a) CM p histories against M∞. (b) Airfoil configurations.

Figure 11. Three robust optimal solutions obtained through DFMOSS in Case 2.

V. Concluding Remarks

In this paper, a new robust optimization approach called DFMOSS has been proposed by incorporating
the idea of MOEA into DFSS, and the robust aerodynamic airfoil design optimizations for future Mars
airplane have been carried out by using the DFMOSS coupled with the CFD simulation. Compared to DFSS,
the present robust optimizations using DFMOSS effectively revealed more detailed trade-off information
between the optimality and the robustness of aerodynamic performances by a single optimization run without
careful tuning of input parameters such as weighting factors and sigma level. Then, the obtained trade-off
information was discussed, and practical airfoil design concepts considering the robustness of aerodynamic
performances have been obtained; an airfoil with a smaller maximum camber improves the robustness in lift
to drag ratio, and an airfoil with a larger curvature at the shock wave location improves the robustness in
pitching moment against the variation of flight Mach number.
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