Large-Eddy Simulation of the flow over a Thin Airfoil at Low Reynolds Number

Ryoji Kojima, Taku Nonomura, Akina Oyama and Kozo Fuji

Abstract The performance of airfoil NACA0002 at Reynolds number of 2.3×10^4 is investigated with large-eddy simulation (LES). The angle of attack is 3, 6, or 9 degree. The behavior of a laminar separation bubble which appears over a thin airfoil and its effects on aerodynamic characteristics are mainly discussed.

1 Introduction

The experimental results by E. V. Laitone at Re = 2.07×10^4 show the possibility that the larger camber, smaller thickness, or sharper leading edge airfoil has, the better performance it has at low Re than ordinary airfoil. [1] However, the reason has not been clarified yet and it is assumed that a laminar separation bubble exists.

In this study, we focus on the flow characteristics of a thin airfoil, and discuss the behavior of a laminar-separation bubble resulting in its superior aerodynamic characteristics.

2 Numerical settings and methods

Mach number is 0.2 and Reynolds number is 2.3×10^4. NACA0002 is adopted as the representative of a thin and symmetric one, for simplifying the problem. Angle of attack (α) is 3, 6 or 9 degree.

Three-dimensional unsteady compressible Navier-Stokes equations are solved. The convection and viscous terms are evaluated by sixth-order compact scheme and tenth-order tridiagonal filter at $\alpha_{esc} = 0.495$, respectively. ADI-SGS is used for time integration, while three-time inner iterations maintain second-order in time.

The grid is C-type, and the number of grid points is approximately 12 million.

Ryoji Kojima
Department of Aeronautics and Astronautics, University of Tokyo, Sagamihara, Kanagawa, 252-5210, Japan. e-mail: kojima@lab.isus.jaxa.jp

Taku Nonomura, Akina Oyama and Kozo Fuji
Institute of Space and Astronautical Science, JAXA, Sagamihara, 252-5210, Japan.
3 Results

It is found in Fig. 1 that the flow separates from the leading edge at each α including as low as 3 degrees due to the sharp leading edge of NACA0002 airfoil. The sharp leading edge keeps separation point the leading edge at all the α.

In the separated shear layer, two-dimensional vortices is shed and the flow transits to generate three-dimensional structured or complex vortices. Transition causes the separated flow to reattach at $\alpha = 3$ and 6 degrees and, as the result a laminar-separation bubble is formed as shown in Fig. 2.

A recirculation zone is observed on the upper surface at each α in Fig. 2, and the separated shear layer at $\alpha = 3, 6$ degree reattaches to upper surface to form a laminar-separation bubble. At $\alpha = 9$ degree, the leading edge stall occurs. Moreover, as α increases, the size of a laminar separation bubble increases. This bubble is classified into "long bubble."

From the corresponding airfoil part in Fig. 2 and Fig. 3 (a), it is noticeable that a laminar-separation bubble enhances the negative pressure. Despite the existence of a laminar separation bubble, the lift curve, shown in Fig. 3 (b), is linear.

![Figure 1](image1.png)

Fig. 1 Instantaneous vortical structure colored by chord-direction vorticity at each angle of attack

![Figure 2](image2.png)

Fig. 2 Span and time averaged chord-direction velocity and stream lines at each angle of attack

![Figure 3](image3.png)

Fig. 3 (a) C_l distribution and (b) C_{Ll}, $C_{Ld} - \alpha$ curves of span and time averaged flow

References