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Abstract. Red-coded Adaptive Range Genetic Algorithms (ARGAS) have been
applied to a practica three-dimensional shape optimization for aerodynamic
design o an aircraft wing. The real-coded ARGAS possss both advantages of
the binary-coded ARGAs and the floating-point representation to overcome the
problems of having alarge search space that requires continuous sampling. The
results confirm that the rea-coded ARGASs consistently find better solutions
than the conventional red-coded Genetic Algorithms do.

1 Introduction

Most of commercia aircrafts today, such asB747, B777, and A340 cruise at transonic
spedls, that is, just below the speed of sound. During the long duration of cruise,
engine thrust is applied to maintain aircraft speed against aerodynamic drag. Since a
large part of their maximum takeoff weights is occupied by the fuel weight, the
objective of an aerodynamic design optimization o atransonic wing is, in principle,
minimization o drag.

Unfortunately, drag minimization has many tradeoffs. There is a tradeoff between
drag and lift because one of the drag component called induced drag increases in
propation to the square of the lift. A wing that achieves no induced drag would have
no lift. Another tradeoff lies between aerodynamic drag and wing structure weight.
An increase in the wing thickness all ows the same bending moment to be arried with
reduced skin thickness with an accompanying reduction in weight. On the other hand,
it will lead to an increase in another component of the drag called wave drag.
Therefore, the agodyramic design o atransonic wingisa callenging problem.

Furthermore, optimization o a transonic wing design is difficult due to the
followings. First, aerodynamic performance of a wing is very senstive to its ape.
Very precise definition o the shape is needed and thus its definition wsually requires
more than 100 design variables. Seaond, function evaluations are very expensive. An
agodynamic evaluation wsing a high fiddity model such as the Navier-Stokes
equations usually requires 60-90 minutes of CPU time on a vedor computer.

Among optimization agorithms, Gradient-based Methods (GMs) are well-known
algorithms, which probe the optimum by calculating local gradient information.



Although GMs are generally superior to other optimizaion agorithms in efficiency,
the optimum obtained from these methods may not be aglobal one, especidly in the
aegodyramic optimizaion problem.

On the other hand, Genetic Algorithms (GAs) are known to be robust methods
modeled onthe mechanism of the natural evolution. GAs have capability of findinga
global optimum because they don't use any derivative information and they seach
from multiple design points. Therefore, GAs are a promisng approach to
aerodyramic optimizations.

Finding a global optimum in the continuows domain for the agodynamic designis
challenging even for GAs. In traditional GAs, binary representation has been used for
chromosomes, which evenly discretizes a real design space. Since binary substrings
representing each parameter with a desired precision are concatenated to form a
chromosome for GAs, the resulting chromosome encoding a large number of design
variables for real-world problems would result in a string length too long. In addition,
there is discrepancy between the binary representation space and the actual problem
space. For example, two points close to each other in the real space might be far away
in the binary-represented space. It is gill an open question to congtruct an efficient
crosover operator that suitsto such amodified problem space

A simple solution to these problems is the use of floating-point representation of
parameters as a chromosome [1]. In these real-coded GAs, a chromosome is coded as
a finite-length string o the real numbers corresponding to the design variables. The
floating-point representation is robust, accurate, and efficient because it is
conceptualy closest to the real design space, and moreover, the string length reduces
to the number of design variables. It has been reported that the red-coded GAs
outperformed binary-coded GAs in many design problems [2]. However, even the
real-coded GAs would leal to premature cnvergence when applied to agrodynamic
shape designs with alarge number of design variables.

The objective of the present work isto develop robust and efficient GAs appliceble
to aerodynamic shape designs. To achieve this goal, the ideaof dynamic coding, in
particular Adaptive Range GAs [3/4], is incorporated with the used of the
floating-point representation. The resulting approach is then applied to a practicd
wing cesign problem as well asa simple test case to examine its performance.

To perform the practical wing design, the computation was processed in paralel
using Numericd Wind Tunnel (NWT) at Nationa Aerospace Laboratory, Japan.
NWT has 166 \ector processng elements at peak performance of 280 GFLOPS The
adual computationtook 108 hous with 64 PE'’s.

2 Adaptive Range Genetic Algorithms

To treat a large seach space with GAs more efficiently, sophisticated approaches
have been propcsed, referred to as dynamic coding, which dynamically dters the
coarseness of the search space. In [5], Krishnakumar et d. presented Stochastic
Genetic Algorithms (Stochastic GAS) to solve problems with a large number of real
design parameters efficiently. Stochastic GAs have been succesgully applied to Flight
Propusion Controll er designs [5] and air combat tadics optimization [6].

Adaptive Range Genetic Algorithms (ARGAs) propcsed by Arakawa and
Hagiwara [3] are aquite new approach, also using dynamic coding for binary-coded



GAs to treat continuows design space. The esence of their idea is to adapt the
popuation toward promising regions during the optimizaion process which enables
efficient and robust search in good precision while keeping the string length small.
Moreover, ARGASs eliminate aneed o prior definition d seach bourdaries snce
ARGAs digribute solution candidates according to the norma distributions of the
design variables in the present population. In [4], ARGAs have been applied to
presare vessl designs and ouperformed aher optimizaionalgorithms.

Since the ideas of the Stochastic GAs and the use of the floating point
representation are incompatible, ARGAs for floating point representation are
developed. The red-coded ARGAS are expected to posess bath advantages of the
binary-coded ARGAS and the floating pant representation to overcome the problems
of having a large seach spacethat requires continuows sampling.

2.1 ARGAsfor Binary Representation

When cornventional binary-coded GAs are applied to red-number optimization
problems, discrete values of real design variables p, are given by evenly discretizing
prior-defined search regions for each design variable [ p.,,, P..J acording to the
length of the binary substringb,, as
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where the average y and the standard deviation o, of each design variable are
determined by the population statistics. Those values are recomputed in every
generation. Then, mapping from a binary string into ared number is given so that the
region between N' ,, and N' , in Fig. 1 is divided into equal size regions according to
the binary bit size &
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where N’ ,and N’ , are alditional system parameters defined in [0,1]. In the ARGAS
genes of design candidates represent relative locations in the updated range of the
design space. Therefore, the off spring are supposed to represent likely a range of an
optimal value of design variables.
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Althouwgh the original ARGAs have been successully applied to real parameter
optimizations, thereis gill room for improvements. The first one is how to sdlect the
system parameters N’ , and N'\, on which robustness and efficiency of ARGAs
largely depend. The second one isthe use of constant intervas even near the center of
the normal distributions. The last one is that since genes represent relative locations,
the off springs become @nstantly away from the centers of the normal distributions
when the digtributions are upcated. Therefore, the actua popul ation statistics does not
coincide with the updated popuation statistics.

2.2 ARGAsfor Floating-Point Representation

In red-coded GAs, red vaues of design
variable ae directly encoded as a real string

r, P=r, where pi,min < I < pi,max-
Otherwise, sometimes normalized values of
the design variables are used as

pi = (pi,max - pi,min) Ijri + pi,min (4) Pl P
Fig. 2 Dewodingfor red-coded ARGAS

where O<r,<1.

To employ floating-point representation ﬁ
for ARGAs, the rea vaues of design
variables p are rewritten here by the real | € |Lnitial population
numbers r, defined in (0,1) so that integral S PN e
of the probability distribution of the
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equal tor, as 1
pi =0; Epr\ + U (5) | Selection I Sampling for
PN range adaptation
f :I_OO N(0,1)(z)dz (6) l
where the average y, and the standard adipa{‘a?'fon
deviation o of each desgn variable are T
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popuation dstributes in the hopeful |
seach regions. Schematic view of this
coding isillustrated in Fig. 2. It should be

noted that the real-coded ARGAS resolve Fig. 3 Flowchart of ARGA
drawbacks of the origina ARGAS, no

neal for selecting N', and N',, as well as arbitrary resolution nea the average.
Updating p and o, every generation, however, results in inconsistency between the
adua and ypdated popuation statistics in the next generation because the selection
operator picks up the genes that correspond to the promising region according to the
old popllation statigtics. To prevent this inconsistency, the present ARGASs update u
and o every M (M>1) generations and then the population is reinitialized. Flowchart
of the present ARGA is shown in Fig. 3. To improve robustness of the present



ARGAs further, relaxation factors, &), and «, are introduced to update the average
and standard deviation as

Hpew =H present + w/,z (IJsampIing —H present) (7)

Onew=0 present + Wy (Usampling -0 present) (8)
where 4, .. and o, are determined by sampling the top half of the population.
Here, «),, wy and M are set to 1, 0.5 and 4, respectively. They are determined by
parametric studies using some simple test functions.

In this study, design variables are encoded in afinite-length string of red numbers.
Fitnessof a design candidate is determined by its rank among the population based on
its objective function value and then selection is performed by the stochastic universa
sampling [7] coupled with the ditist strategy. Ranking selection is adopted since it
maintains sufficient selection presaure throughou the optimization. One-point
crosover is always applied to red-number strings of the sdected design candidates.
Structured coding [8] is incorporated for the wing design. Mutation takes place & a
probability of 0.1, and then a uniform random disturbance is added to the
correspondng gene in the anourt upto 0.1.

2.3 Test Problem Using a M ulti-Modal Function

To demonstrate how the real-coded ARGA works, it was applied to minimization of a
high dimensional multi-modal function:

Fl= § (%% +5(1-cos(x; ) )
i=1

where x; O[—3,3] . Thisfunction has a global minimum at x=0 and two loca optima
nea x; =*2. In the real-coded ARGA, x, correspord to p. in eq.(5). 150 generations

were dlowed with a population size of 300. Five trials were run for each GA
changing seeds for random numbers to give different initial populations. Figure 4
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compares the performances of the conventional GA and the ARGA. Figure 5 plots all
x,'s from the temporary solutions, which helps to undersand why the ARGA works
better than the conventional GA. This figure shows that the ARGA maintains gene
diversity longer than the conventional GA in theinitial phase and then adaptsto their
seach space to the local region near the optimal. While the initial gene diversity
contributes to the ARGA’ s robustness, the adaptive feature of the ARGA improves
their local search capability. The ARGA also showed its advantages over areal-coded
GA on dyramic control problem and agodyramic arfoil shape optimizaion[9].

3 Aerodynamic Design of a Transonic Wing

A wide range of approximations can represent the flow physics Among them, the
Navier-Stokes equations provide the state-of-the-aft of aerodynamic performance
evaluation for engineeing purposes. Although the three-dimensional Navier-Stokes
cdculation requires large @mputer resources to esimate wing performances within a
ressonable time, it is necessary because aflow around a wing involves sgnificant
viscous effects, such as potentid bourdary-layer separations and shock
wave/bourdary layer interactions in the transonic regime. Here, a threedimensional
Reynolds-averaged Navier-Stokes solver [10] is used to guarantee a accurate model
of the flow field and to demonstrate the feasibility of the present algorithm.

The objedive of the present wing design problem is maximization o lift-to-drag
ratio L/D at the transonic cruise design pant, maintaining the minimum wing
thickness required for structural integrity against the bending moment due to the lift
distribution. The cruising Mach number is set to 0.8. The Reynolds number based on
the chord length at the wing roct is assumed to 10

In the present optimization, a planform shape of generic transport was slected as
the test configuration (Fig. 6). Wing profil es of design candidates are generated by the
PARSEC airfoils as briefly described in the next section. The PARSEC parameters
and the sectional angle of attadk (in other words, root incident angle and twist angle)
are given at seven spanwise sections, of which spanwise locations are also treated as
design variables except for the wing root and tip locations. The PARSEC parameters
are rearranged from root to tip according to the arfail thickness ® that the resulting
wings aways have maximum thicknessat the wing root. The twist angle parameter is
also rearranged into numerical order from tip to root. The wing surface is then
interpolated in spanwise diredion by wsing the second-order Spline interpolation.

In total, 87 parameters determine awing geometry. Parameter ranges of the design
space are shown in Table 1. It should be noted that in ARGAS, user-defined design
space isused just to seed the initial population. ARGA can promote the search space
outside of theinitially defined design space

To estimate the required thicknessdistribution to stand the bending moment due to
the lift distribution, the wing is modeled by a thin walled box-beam as shown in Fig.
6. The congraint for wing thicknesst, is gecified by wangthe minimum thicknesst,
cdculated from the wing boxsustaining the agodyramic bending moment M as,

tl>L:t )
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where foll owing assumptions are made: the thickness of the skin panels are 2.5[cm]
and its ultimate normal stress g, is 39[ksi]. The length o the chord at wing roct ¢

and maximum wingspan b/2 are 10{m] and 18.8[m], respedively (for the derivation
of Eq. (10), see[1]] for example).
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Fig. 6 Wing geometry definition. Planform shape is frozen during the optimization. Wing box
is used to edtimate its gructura strength. PARSEC parameters are the design variables for
airfoil shapes defined at seven spanwise sedions

Table 1 Parameter ranges of the design space PARSEC is determied by leading-edge radius
(r.e), upper and lower crest locaionsincluding curvatures (X, Z0, Zyie Xior Zioy Z

up? XXUP Lo LO? XXLO)’

traili ng-edge ordinate (Z,.) and thickness(AZ,,) and dredion and wedge angles (O, B;.)

pararneters rLE ZTE aTE BTE XUP ZUP ZXXU P XLO ZLO ZXXLO tWI St
ange
Upper 0030 001 -30 80 07 018 00 06 002 09 7
bound deg
Lower 0.002 -0.01 -130 40 03 008 -03 02 -004 03 -1
bound deg

3.1 PARSEC Airfoils

An airfoil family “PARSEC” has been recently propcsed to parameterize an airfoil
shape [12]. A remarkable point is that this technique has been developed aming to
control important aerodynamic features eff ectively by selecting the design parameters
based onthe knowledge of transonic flows aroundan airfail .

Similar to 4-digit NACA series airfoils, the PARSEC parameterizes upper and
lower airfail surfacesusing pdynomialsin coordinates X, Z as,

6
2:2% D<n—1/2 (11)
n=1

where a, are red coefficients. Instead of taking these coefficients as design
parameters the PARSEC airfoils are defined by basic geometric parameters:



leading-edge radius (r,.), upper and lower crest locations including curvatures (X,
Zi Zoyir Xior Ziow Zuxio)s trailing-edge ordinate (Z,.), thickness (AZ,.) and drection
and wedge angles (a,, B;2) as $rownin Fig. 6. These parameters can be expressed by
the original coefficients a, by solving smple simultaneous equations. Eleven design
parameters are required for the PARSEC airfoil sto define an airfal shapein totd. In
the present case, the trailing-edge thickness is frozen to 0. Therefore, ten design
variables are used to gve eab spanwise sedion d the wing.

3.2 Optimization Using Real-Coded ARGA

Because the objective function distribution of the present optimization is likely to be
more mmplex than the above test function minimization, the relaxation factor w, is
now set to 0.3. The structured coding coupled with one-point crossover proposed in
[13] isaso incorporated. The present ARGA adopts the ditist strategy where the best
and the second begt individuals in each generation are transferred into the next
generation withou any crosover or mutation. The parental selection consists of the
stochastic universal sampling and the ranking method using Michalewicz's nonlinear
function. Mutation takes place & a probability of 10% and then adds a random
disturbance to the corresponding gene in the amount upto + 10% of each parameter
range in Table 1. The population sze is kept at 64 and the maximum number of
generations is st to 65 (based on the CPU time dlowed). The initial population is
generated randamly over the entire design space

The main concern related to the use of GAs couded with a three-dimensional
Navier-Stokes lver for agrodynamic designs is the computational cost required. In
the present case, each CFD evaluation takes about 100 min. of CPU time even on a
vector computer. Because the present optimization evaluates 64 x 65 = 4160 design
candidates, sequential evolutionswould take dmost 7000 h(more than nine months!).

Fortunately, parallel vector computers are now available & several institutions and
universities. In addition, GAs are intrinsicdly parallel agorithms and can be ealy
pardlelized. One of such computers is Numerical Wind Tunnel (NWT) located at
National Aerospace Laboratory in Japan. NWT is a MIMD parallel computer with
166 vector-processng elements (PES) and its total peak performance and the total
main memory capacity are about 280 GFLOPS and 45GB, respectively. For more
detail, see[14]. In the present optimization, evaluation processat each generation was
pardlelized using the master-slave concept. This made the correspondng turnaround
time dmost 1/64 kecause the CPU time used for GA operators are negligible.

To hande the structural constraint with the single-objective GA, the cnstrained
optimization groblem was transformed into an urconstrained problem as

100+ L/D if t>t

fitnessfunction= [} _oomn (12
E(100+ L/D) lexpt - t,,) otherwise

where t and t, are thickness and minimum thickness at the span station of the

maximum loca stress. The exponential term penalizes the infeasible solutions by

reducing the fitness function value. Because some design candidates can have

negative L/D, the summation of 100and L/D is used.



3.3 Results

The optimization history is $own in Fig. 7 in terms of L/D. During the initia phase
of the optimization, some members had a strong shock wave or failed to satisfy the

structura constraint. However, they were weeded ou 19 -
from the population because of the resultant penaltiesto 18
the fitness The final design has L/D of 1891 (C,. = 17 T

0.26213 and C, = 0.013%) satisfying the given 16
structural  condtraint.  Turnarourd  time  of  this Sis
optimizationwas about 108 h onNWT. 14

To examine whether the present optimal design is 13
close to a globa optimum, we have checked it against 12
analytically and empirically edablished design 13
guidelines. In agodynamics, spanwise lift distribution 0 102 B e
shoud be dliptic to minimize the induced drag. [y 7 optimizaion tistory
However, the dructural constraint leads to a tradeoff
between induced drag and wave drag. This enforces the spanwise lift distribution to
be linear rather than eliptic. The present solution has alinear distribution. To produce
this distribution, a wing is usually twisted in about five degrees. The present wing is
twisted in six degrees.

Figure 8 shows the desgned arfoil sections and the correspording pressire
distributions at the 0, 33, and 66% spanwise locations. In the presaure distributions,
neither any strong shock wave nor any flow separation is found This ensures that the
present wing hes very little wave drag and presaure drag. At 33 and 66% spanwise
locations, the rodftop, front-loading and rea loading petterns are observed, which are
typical for the supercritical airfoils [15) used for advanced transport today. The
correspondng airfoil shapes are indeed smilar to supercriticd airfoils. Overal, these
detailed olservations of the design confirm that the present design is very close to a
global optimum expeded by the present knowledge in agodyramics.
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Fig. 8 Designed airfoil sedions and correspondng presaure distributions
4 Summary

To develop GAs applicéble to practicd aerodynamic shape designs, the real-coded
ARGAs have been developed by incorporating the ideaof the binary-coded ARGAs
with the use of the floating-point representation. The real-coded ARGA has been
applied to a practica aerodynamic design optimization of a transonic wing shape for
generic transport as well as a ample test case. The test case result confirms the



present GA outperformsthe mnventional GA.

Aerodynamic optimization was performed with 87real-number design variables by
using the Navier-Stokes code. The realistic structural constraint was imposed. The
resulting wing appears very similar to advanced wing designs based on supercritica
airfoils. The draight span load digribution of the resulting design represents a
compromise between minimizations of induced drag and wave drag. The designed
wing aso has a fully attached flow and the dlowable minimum thickness ® that
presare drag and wave drag are minimized under the present structural constraint.
These results confirm the feasibility of the present approach for future gplicaions.
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