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ABSTRACT

Evolutionary Algorithms (EAs) based on structured

coding have been proposed for aerodynamic
optimization of wing design. Fractional factorial design
is used to investigate interactions of the design variables
to determine the appropriate coding structure for EAs in
advance. To improve efficiency and accuracy of this
approach, parameterization techniques of airfoil shapes
are first tested through reproduction of a NASA
supercritical airfoil. Their performance is also examined
by performing aerodynamic design optimization coupled
with a two-dimensional Navier-Stokes code. Finally,
three-dimensional wing design is optimized based on a

potential flow code and the design result is presented.

1. INTRODUCTION

In aerodynamic designs, Evolutionary Algorithms (EAs,
for example, see [1]) have increasingly become popular
due to the remarkable robustness and simplicity in
EAs
successfully applied to aerodynamic designs of two-

coupling CFD codes together. have been
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dimensional shapes such as airfoils and turbine blades
[2-4]. Even a three-dimensional wing design has been
demonstrated by simplifying the geometry definition
according to subsonic aerodynamics [5].

However, application of EAs to real-world problems
in aerodynamic optimization may not be straightforward.
Since such optimization problems usually require a large
number of design variables, they have a highly multi-
dimensional search space and extremely complicated
objective function distribution. Without narrowing down
the search region, even EAs would fail to find a globally
optimum design. A transonic wing design might be a
typical case.

When EAs are applied to engineering optimization
problems, the complexity in the objective function
appears as interactions among design parameters. These
interactions are often referred as “epistasis”,
corresponding to the term used in biology. If epistasis of
design variables can be identified in advance, a smoother
landscape of the objective function can be reproduced by
rearranging the encoding of design variables. Therefore,
a properly structured coding can be constructed by the
epistasis analysis. However, an exhaustive search of
epistasis requires as many CFD analysis's, as those
required for EAs itself. Obviously, computational effort
for such preprocessing is prohibitive.

In [6], EA with the structured coding have been
applied to a transonic wing shape design, where wing
profiles were defined by the extended Joukowski
transformation [7]. In this study, Fractional Factorial
Design (FFD, [8]) was applied to examine the epistasis
of the design variables. FFD is a statistical tool and it has
been developed to gain sufficient information from a
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structured set of coherent tests at the least expenditure of
resources.

Although the structured coding improved the design
performance better than the regular sequential coding in
Ref. 6, of the
transformation may be in question. The extended

capability extended Joukowski
Joukowski transformation can reproduce various kinds of
airfoils with small number of design variables, still it
may not be adequate for real-world applications,
especially for transonic airfoil definitions.

The objective of the present study is to construct an
EA-based transonic wing shape optimization method
using a more precise airfoil parameterization technique.
First, the accuracy of airfoil parameterization techniques
will be tested through reproduction of a NASA
supercritical airfoil. Then, those techniques will be
compared by performing an airfoil shape optimization
based on an EA coupled with a two-dimensional Navier-
Stokes solver. Finally, the three-dimensional wing shape
optimization will be performed by using an EA based on
the structured coding derived from FFD. The present
results will be compared with those obtained by the
extended Joukowski transformation.

2. APPROACH

2.1 EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms are emergent numerical
optimization algorithms modeled on mechanism of the
natural evolution, which consists of fitness evaluation of
individuals, selection according to the fitness, crossover
and mutation of mating pair's genes. When EAs are
applied to numerical optimizations, fitness, individual
and genes usually correspond to objective function value,
design candidate, and design variables, respectively. The
initial candidates are usually created randomly. The
flowchart of a typical EA is illustrated in Fig. 1.

One of the key features of EAs is that they search from
multiple points, instead of moving from a single point
like gradient-based methods. In addition, they require no
derivatives or gradients of the objective function. These
features lead to remarkable robustness in optimization
and simplicity in coupling CFD codes together. In
addition, parallel efficiency may be extremely high by
using a simple master-slave concept for function
evaluations, if such evaluations consume most of CPU

time. Aerodynamic optimization using CFD will be a
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typical case.
To improve the robustness of EAs further, Adaptive
Range Genetic Algorithm (ARGA) [9,10] was

introduced in the two-dimensional optimization. ARGA
were originally developed by Arakawa for binary-coded
Genetic Algorithms [10]. The ARGA can overcome
difficulty in solving large-scale design optimization
problems promoting the population toward promising
design regions during the optimization process. It was
adapted for the real-number coding used here.

Extension of EAs

problems is also straightforward. By using the Pareto-

to multiple-objective  design

ranking method and the fitness sharing [11], EAs can
sample possible tradeoff solutions globally from the
design space. This gives an approximation of the tradeoff
surface in the design space. In this study, the best-N
selection [12] is incorporated, where the best N
individuals are selected for the next generation among N
parents and N children so that Pareto solutions will be

kept once they are formed.

2.2 FRACTIONAL FRACTORIAL DESIGN

A parametric study is often conducted by varying one
parameter at a time or by trial and error for a limited
number of parameters. However, such approaches only
lead to incomplete knowledge for a large design space.
An exhaustive search, in contrast, requires unacceptably
large number of experiments and thus they are not
suitable to real-world problems. For instance, a complete
study of a design space of 10 parameters with 3 levels
requires 3' = 59049 experiments.

FFD is a statistical approach that has been developed
to gain sufficient information from a structured set of
coherent tests at the least expenditure of resources. It
reduces the required number of experiments by arranging
the experiments according to the orthogonal array. The
effectiveness of factors and their interactions are
estimated by F-tests. FFD was originally developed by
R.A. Fisher. These days, FFD is often used for screening

experiment of the response surface method.

3. AIRFOIL PARAMETERIZATION

3.1 THE EXTENDED JOUKOWSKI
TRANSFORMATION

Equation (1) is well known as the Joukowski
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transformation that transforms a circle into various
airfoils:

(M

1
C22+_
z

The extended Joukowski transformation [7] give further
variety in the resultant airfoil shapes using a preliminary
transformation before the Joukowski transformation as

Z=z- € )
(z-4)

3)

v ]
C=z +—'
z

where € and A are a complex number and a real number,
respectively. The airfoil defined by 5
parameters: center of the circle Z, real part and

shape is

imaginary part of €, and A. An example of the extended
Joukowski transformation is illustrated in Fig. 2.

Instead of the raw design variables (Z, €, A), the
present design variables are given by (X, V., X, ¥V, )
where the center of the circle Z, and the complex number
€ correspond to the position (x, y.) and (X, ),
respectively. A is the preliminary movement in the real
axis. It is known that x, and x, are related to the airfoil
thickness while y, and y, are related to the airfoil camber.

3.2 THE INVERSE THEODORSEN
TRANSFORMATION

Any given airfoil shape can be transformed into a unit
circle, using the Joukowski transformation and a primary
approximation as

(4)

p L1
C=z+—
z

()

z'= zexp(% Z—Z)

where the complex numbers C, are determined by the

Fast Fourier Transformation [13]. The inverse
Theodorsen transformation can be used to parameterize
an airfoil shape. The accuracy of this technique depends
on the truncation of summation in Eq. (5). In this study,
an airfoil shape is defined by 13 parameters, which

corresponds to the truncation at the sixth term.

3.3 B-SPLINE CURVES

Parameterization using the third-order B-Spline curves is
one of the most popular approaches for airfoil designs.
The design parameters are positions of control points of
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the B-Spline curves. In this study, airfoil geometry is
split into a mean camber line and thickness distribution.
Five control points are used for each of the mean camber
line and the thickness distribution (Fig. 3). Since
locations of the leading edge and trailing edge are frozen,
12 design variables are required to give an airfoil shape.

3.4 ORTHOGONAL SHAPE FUNCTIONS

There is a class of parameterization techniques based on
linear combination of shape functions. I-Chung Chang et
al. have proposed an polynomial function to
parameterize upper and lower surfaces of an airfoil using
orthogonal shape functions to reduce the required design

parameters [14]:
1 6 10 L

1 1
Z= al(xE -x)+ Zan(x"_1 -x")+ Zan(x”“‘ —x"%) (6)

This approach for the airfoil parameterization is a
derivative of the original NACA method [15]. The
number of parameters is 20.

3.5 SOBIECZKY SHAPE FUCTIONS

Another approach using linear combination of shape
functions is proposed by Sobieczky [16]. The key
concept is that the choice of design parameters should be
based on the flow structure around an airfoil and
therefore, aerodynamic performance. An airfoil shape is
defined by basic geometric parameters instead of the
coefficients of shape functions themselves: leading-edge
radius, upper and lower crest location including
curvatures, trailing-edge ordinate, thickness, direction
and wedge angle. Those parameters are illustrated in Fig.
4. The following polynomials are used for the geometry

definition.

6
n-1/2
a, [ X

n=

Z= (7)

In this study, trailing-edge thickness is frozen to 0. In
total, 10 design variables are used to give an airfoil
shape.

4. RESULTS

4.1 REPRODUCTION OF NASA
SUPERCRITICAL AIRFOIL

To examine accuracy of airfoil parameterization
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techniques, reproduction of a NASA supercritical airfoil
SC(2)-0414 was first performed by means of EAs
minimizing differences between the SC(2)-0414 airfoil
the
parameterizations. To improve the capability of finding a

geometry and airfoil shapes reproduced by
global optimum, a real-coded ARGA was used. In the
evolutionary process, 300 generations were run for five
times with a population size of 200. Here, trailing-edge
ordinate of the Sobieczky airfoil was frozen to 0 for
comparison purpose.

The and the

residuals are presented in Fig. 5 and Table. 1,

reproduced airfoils corresponding

respectively. It should be noted that five runs were
performed for each airfoil but the difference was
negligible. The results show that the SC(2)-0414 airfoil
is included in the parameterized space of Sobieczky,
Theodorsen, and B-Spline airfoils. The residuals of those
airfoils in Table 1 are not converged to machine-zero due
to the brunt trailing edge of the SC(2)-0414 airfoil.

The extended Joukowski airfoil and the airfoil using
orthogonal shape functions have failed to reach the
SC(2)-0414 airfoil. Obviously, failure of the extended
Joukowski airfoil is due to the insufficient design space.
Although the set of the orthogonal shape functions
includes the generator of the NACA 4-digit airfoils, EA
using the orthogonal shape functions has also failed to
reach the NACA 2412 airfoil (the result is not shown
here). These results indicate that the airfoil definition
using orthogonal shape functions is not suited for EA-
based optimization because of the difficulty in the
optimization process.

4.2 TWO-DIMENSIONAL
AERODYNAMIC DESIGNS

Next, acrodynamic optimizations of an airfoil shape were
demonstrated to examine the airfoil parameterizations
further. The objective function was the lift-to-drag ratio
to be maximized. The free stream Mach number and the
angle of attack were set to 0.8 and 2 degrees,
respectively. The aerodynamic performance of each
design was evaluated by the two-dimensional Navier-
Stokes solver based on a TVD-type upwind differencing
[17], the LU-SGS scheme [18] and the multigrid method
[19]. The airfoil thickness was constrained so that the
maximum thickness was greater than 12% of the chord
length. The real-coded ARGA was used to maximize the
objective function where the population size and the
number of generations were both 100. Two trials were
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performed for each airfoil parameterization. Trailing-
edge ordinate of the Sobieczky airfoil was again frozen
to 0 for comparison purpose.

Figure 6 shows the optimization history. The
aerodynamic performances of the design results are
summarized in Table 2. These results illustrate that the
performance of the designed airfoil greatly depends on
the choice of the parameterization techniques.

EA using the Sobieczky shape functions has reached
to the airfoil shape of the best performance. The present
good design probably originates in the selection of
design parameters that are directly related to the
knowledge of transonic flows around the airfoil. This
parameterization gives the design space wide enough as
shown in the previous section, which also helps finding a
global optimum.

The resulting airfoil shape and the corresponding Cp
distribution are shown in Fig. 7. The surface pressure
distribution is similar to that of NASA supercritical
airfoils, such as an approximately uniform distribution
(rooftop) on the upper surface, a weak shock wave
significantly aft of the midchord, a pressure plateau
downstream of the shock wave, a relatively steep
pressure recovery on the extreme rearward region, and a
trailing edge pressure slightly more positive than ambient
pressure [20]. The design result indicates the feasibility
of the present approach.

EA using the B-Spline curves has succeeded in finding
a reasonably good airfoil design but the performance of
the resulting airfoil is slightly less than that optimized by
the Sobieczky shape functions. The reason is probably
the selection of the design parameters. The locations of
B-Spline control points are not related to the flow
physics in contrast to the parameter set of the Sobieczky
shape functions.

The resulting airfoil obtained from the inverse
Theodorsen transformation performed worst. To check
whether the design obtained by the Sobieczky shape
functions is included in the search space of the inverse
Theodorsen transformation, airfoil reproduction was
tried as shown in Fig. 8. While the extended Joukowski
airfoil has failed to express the best design, the others
including the inverse Theodorsen transformation have
succeeded. This indicates that the worst performance of
EA using the inverse Theodorsen transformation is not
due to insufficient search space. The reason of the failure
is again that the design parameters of the inverse
Theodorsen transformation are not related directly to the
flow physics about an airfoil.

The extended Joukowski transformation has found an
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airfoil that performs better than the inverse Theodorsen
transformation. This is due to a relatively small number
of design parameters and thus a smaller search space.
The other reason is that (x, x,) and (y, y, ) are related to
the airfoil thickness and the mean camber line,
respectively. They are important factors for airfoil
performance. As shown in Fig. 8, however, the design
space is too small to obtain a global optimum for the

airfoil design.

4.3 THREE-DIMENSIONAL
AERODYNAMIC DESIGNS

In this section, EAs based on the structured coding were
applied to a three-dimensional wing shape design using
the Sobieczky shape functions. The epistasis of the
design variables was examined prior to the optimization
by FFD. For the comparison, the results of the wing
design using the extended Joukowski transformation [6]
are presented at first. Next, the structured coding is
developed for the parameter set of the Sobieczky shape
functions based on FFD. The resulting EA is then
applied to the same optimization problem.

Objective functions used here are C; to be maximized
and C,, to be minimized. Therefore, Multi-Objective EA
is used. The cruising Mach number is assumed to be 0.8.
Aerodynamic performances are evaluated by the FLO-27
code, which is a conservative full-potential code
developed by Jameson and Caughey [21]. The wing
shape is defined by airfoil shapes and a twist distribution
o given at seven spanwise sections for the extended
Joukowski transformation and at four spanwise sections
for the Sobieczky airfoil. The wing planform was taken
from a typical transonic aircraft as Ref. 5.

4.3.1 WING DESIGN USING THE EXTENDED
JOUKOWSKI TRANSFORMATION

In Ref. 6, FFD was applied to the epistasis analysis, that
is, the interactions of the design variables for the
of
interactions of all design variables for the wing model,

extended Joukowski transformation. Analysis
however, requires unacceptably large number of CFD
runs even with the FFD. Therefore, the design variables
are grouped into the spanwise variations of airfoil shape
parameters and twist angle x,, y,, X,, ¥,, A and o as shown
in Fig. 9. Factors examined are the parameters

themselves and their two-factor interactions except for
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those related to a. Three types of spanwise variations are
considered as levels: no variation, linear increase from
root to tip, and vice versa.

Examined responses are C, and C,, of the wing. Only
to account for positive responses in aerodynamic
performance (increase in C; and decrease in Cp),

following two functions are introduced:
Fl=max (C, -Cy,0) N

®

where C,, and Cp, are those of a wing having a constant

F2=-min (Cp - Cpy,0)

airfoil section along the spanwise direction.

Figure 10 shows the result of the epistasis analysis.
The solid and broken lines are critical F values with 1%
and 5% statistical risks, respectively. F values more than
these critical values are judged effective. While every
factor is effective on both F1 and F2, interactions of x.x,
and y.y, appear effective. This result is consistent with
the fact that x,, x, are related to the airfoil thickness
while y_ and y, are related to the airfoil camber line.

To make use of identified hierarchy of the design
variables, spanwise distributions of airfoil parameters
and twist angle are coded as genes and one-point
crossover is used where the crossover of (x,, x,) and (y,,
y,) are apt to happen at the same gene sites. The resultant
structured coding is shown in Fig. 11. This is supposed
to preserve good building blocks of (x,, x,) and (v, ¥).

EA using this coding technique was compared with
EA using the regular sequential coding based on Fig. 9.
Figure 12 shows the Pareto optimal solutions indicating
the
minimization of Cp. Solid and hollow points show the

tradeoff between maximization of C; and
resulting Pareto fronts obtained from the structured and
sequential codings, respectively. This figure confirms
that the present EA with the
outperforms the conventional EA with the sequential

structured coding

coding. Airfoil sections of the designed wings at C; = 0.5
are shown in Figs. 13 and 14. The structured coding
results in the shape closer to supercritical airfoils than the
sequential coding.

4.3.2 WING DESIGN USING THE
SOBIECZKY SHAPE FUNCTIONS

FFD is now applied to the epistasis analysis of the
parameter sets for the Sobieczky shape functions. The
factors to be examined are 1,5, Xup, Zup, Zxxups X105 Z10s
Zyx10> Org, Zpg and their two-factor interactions on F1
and F2. B4z and its interactions are neglected since the
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wedge angle at the trailing edge is primary determined
by the structural strength. Also, interactions of 1, Zy,
I g0 and 1;:Zyy o are disregarded. Consequently, 42
factors are examined. Number of CFD runs required for
this epistasis analysis is reduced from 3° = 19683 to 3° =
729 thanks to FFD.

Figure 15 shows the result of the epistasis analysis.
Interactions effective in both C; and Cy are illustrated
with bold lines in Fig. 16. Since these figures indicate
complicated interactions among the design variables,
especially, Zyp, Z, o, and Zq, it is difficult to construct a
structured coding for these design variables. Therefore,
new parameters Z. and Z,; are introduced instead of Z;,

and Z, , as;
Ze=(Zyw+Zo)/2 Q)
Zy=(Zw-Zy) (10)

where Z. and Z, correspond to airfoil camber and

thickness, respectively. Using these parameters,
interactions are greatly simplified as shown in Fig.17.
According to this result, a structured coding for the
spanwise distributions of airfoil parameters is introduced
as shown in Fig.18. Here, one-point crossover is apt to
happen at the same gene sites for the connected spanwise
distributions in the figure.

The design result obtained by the EA using this
structured coding is again compared with that obtained
by the EA using the sequential coding. Figure 19 shows
Pareto fronts obtained from the sequential coding of the
original Sobieczky shape functions and the structured
coding using Z. and Z,. The advantage of the structured
coding is clearly observed. The corresponding designs
are shown in Figs. 20 and 21. The drag coefficients at C,
= 0.5 are summarized in Table 3. The best design is
obtained by EA based on the proposed structured coding

using the Sobieczky shape functions.

S. CONCLUSIONS

First, several parameterization techniques for the
airfoil definition have been investigated through the
reproduction of a NASA supercritical airfoil and the
aerodynamic optimization by means of EAs. The results
show that the performance of the designed airfoil greatly
depends on the choice of the parameterization techniques.
EA using the Sobieczky shape functions succeeded in
finding the airfoil shape of the best performance. This is
thanks to the selection of design parameters that are
directly related to the knowledge of transonic flows
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around the airfoil. This parameterization gives the design
space wide enough, which also helps finding a global
optimum,

Next, FFD was applied to the epistasis analysis of the
parameter set for the Sobieczky shape functions. FFD
was used to analyze interactions of the design variables.
The coding structure for EA was developed according to
the resultant information. EA using the structured coding
was then applied to the aerodynamic optimization
problem of a transonic wing design. The design results
indicate that the structured coding for EAs is a promising
approach to find a global optimum in real-world
applications.
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transformation.

American Institute of Aeronautics and Astronautics



— Thickness distribution
0.08 - ==&=== Control points for thickness distribution

0.06 oo, e L USRS SU .

z/C

: Camber line |
i | === Control points for camber line

zZ/C

Z/C

0 0.2 0.4 0.6 0.8 1
X/C

Figure 3. B-Spline curves for mean camber line and
thickness distribution and the resultant
airfoil shape.

T 7
ZUP """"""""" JXUP Org
> Xup
/3
0 k Xio =4 JAZTE
Y B — Z}'{'XLO B ZTET
TE

Figure 4. Design parameters for the Sobieczky shape
functions.

/ N\
0.05 AN
Sobieczky
------ B-Splie
O o -=-= E. Joukowski -
N — — Theodorsen K-'
--------- Chang ’
o SC(2)-0414
-0.05
0 0.2 04 0.6 0.8 1

X/C

Figure 5. Comparison of the reproduced airfoils.

Table 1. Residual of the SC(2)-0414 airfoil reproduction.

Extended Chang Sobieczky | Theodorsen | B-Spline

Joukowski

4.17e-3 2.40e-3 | 8.00e-4 7.02¢-4 7.13e-4
40
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Figure 6. Optimization histories.

Table 2. Results of aerodynamic optimizations.

Theodorsen | Extended B-Spline | Sobieczky
Joukowski
L/D | 31.87 34.73 39.02 39.40
Cl 0.5535 0.5427 0.6223 0.6253
Cd ]0.01737 0.01562 0.01595 | 0.01587
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Figure 10. Effectiveness of factors and their interactions
for the extended Joukowski transformation.
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Figure 11. Structured coding for the extended Joukowski
transformation.
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Figure 12. Comparison of Pareto fronts for sequential

and structured coding techniques.
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Figure 13. Wing shape optimized by sequential coding. Figure 14. Wing shape optimized by structured coding.
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Figure 15. Effectiveness of factors and their interactions for Sobieczky shape functions.
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Figure 16. Effective interactions of the original airfoil Figure 17. Effective interactions of the modified
definition. airfoil definition.
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Figure 18. Structured coding for the Sobieczky airfoil. N
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Figure 19. Comparison of Pareto fronts for sequential
and structured coding techniques.

Table 3. Comparison of C at C,=0.5.

Sequential Structured
coding coding . . .. .
Fxtended Joukowski 119610 T 170402 Figure 21. Wing shape optimized by structured coding.
transformation airfoil
Sobieczky airfoil 1.1951e-2 1.1339¢-2
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